А.С.Власенко, А.Ю. Маскинская, Э.Д. Сергиевский

Московский энергетический институт (технический университет), Россия

СОПРЯЖЕННЫЙ ТЕПЛООБМЕН В КАНАЛЕ С ЛУНКАМИ НА НИЖНЕЙ ПОВЕРХНОСТИ

АННОТАЦИЯ

Проведены расчеты тепловых и гидродинамических характеристик в сопряженной постановке в канале с подогреваемой нижней пластиной, на поверхность которой нанесены лунки. Расчеты проводились при различных материалах поверхности и различных режимных параметрах течения в канале.

1. ВВЕДЕНИЕ

В последние годы появилось много работ, в которых исследуются теплообменные и гидродинамические характеристики вблизи поверхностей с углублениями различной формы. Интерес к этому способу интенсификации вызван тем, что при его реализации рост относительного коэффициента теплообмена опережает рост относительного коэффициента сопротивления.

В то же время расчетных работ, в которых анализируются локальные тепловые и гидродинамические характеристики, немного. Поэтому в данной работе проводится анализ этих характеристик, полученных расчетным путём, для сопряженной задачи при различных материалах поверхности, на которую нанесены лунки.

2. РАСЧЕТНАЯ МОДЕЛЬ

Для проведения расчетных работ была создана модель течения воздуха в прямоугольном канале с геометрическими и физическими характеристиками, близкими к экспериментальным [1]. Размеры на рис.1 указаны в мм.

В эксперименте в качестве тепловыделяющего элемента была использована нихромовая спираль с тепловыделением Q=50 Вт, которая была помещена в пластину из текстолита толщиной 0.013 м. Сверху нагревательного элемента была помещена сменная пластина.

Для минимизации потери тепла через нижнюю пластину в качестве используемого материала был выбран текстолит (материал с низкой теплопроводностью) толщиной 0.015 м.

В качестве теплоносителя использовался воздух, подаваемый в рабочий участок со скоростью $U_0 = 15$ м/с и входной температурой $T_0 = 22$ °C.

Размеры канала: x = 0.3 м, y = 0.06 м, z = 0.092 м, где x – длина, y - ширина и z - высота канала. За высоту канала z принимаем высоту проходного сечения канала $z_{np} = 0.062$ плюс толщина двух текстолитовых пластин, воздушной прослойки и исследуемой пластины из алюминия.

Для представления системы уравнений в обобщенной форме обозначим в декартовой системе координат независимые переменные x_1 , x_2 и x_3 , представляющие соответственно координаты x, y и z. Компоненты скорости в каждом из этих направлений, которые будем использовать после преобразования координат, обозначим символами U_i , где нижний индекс i (или j) в соответствии с тремя пространственными координатами принимает значения 1, 2, 3. Уравнения в тензорном виде имеют общую форму:

$$\frac{d(\rho \Phi_i)}{dt} + \operatorname{div}(\rho_i V_i \Phi_i - \Gamma \phi_i \operatorname{grad}(\Phi_i)) = S_i , \qquad (1)$$

где Φ_i - любая переменная *i*-й фазы, такая как энтальпия, момент на единицу массы, массовая доля химической компоненты, турбулентная энергия и т.д.; V_i - вектор скорости *i*-й фазы; $\Gamma \phi_i$ - диффузионный коэффициент свойства Φ в *i*-й фазе; S_i – источник свойства Φ .

Для замыкания системы использовалась стандартная К-є модель турбулентности. С помощью вычислительного комплекса Phoenics 3.5 были получены распределения скорости, давления и температуры по длине, ширине и высоте канала.

Рис.1. Модель рабочего канала

В случае канала с нижней поверхностью из алюминия длина канала была разбита на 50 неравномерных ячеек, где размер ячеек с 1-й по 2-ю и с 49-й по 50-ю x = 0.0071278 м, ширина — на 20 ячеек с размерами y = 0.0071278 м, а высота — на 70 неравномерных ячеек, где размер ячеек с 1-й по 3-ю и с 18-й по 20-ю z = 0.0026666667 м, а с 4-й по 17-ю z = 0.002721431 м. Ячейки с 1-й по 3-ю и с 18-й по 20-ю находились в твердом теле, а с 4-й по 17-ю — в воздухе.

В результате расчетов были получены профили скоростей, температур и давлений в канале.

2.1. Канал с лунками

Был проведен аналогичный расчет для канала, на нижней поверхности которого установлена алюминиевая пластина с 27 лунками (рис.2), расположенными в коридорном порядке (геометрия течения близка к экспериментам).

Рис.2. Пластина с лунками

Для этого количество разбиений вдоль осей x, yи z, было увеличено. Длина канала была разбита на 247 неравномерных ячеек, где размер ячеек с 1-й по 2-ю и с 49-й по 50-ю x = 0.0071278 м, ширина — на 89 ячеек с размерами y = 0.0071278 м, а высота на 95 неравномерных ячеек, где размер ячеек с 1-й по 3-ю и с 18-й по 20-ю z = 0.0026666667 м, а с 4-й по 17-ю z = 0.002721431 м. Ячейки с 1-й по 3-ю и с 18-й по 20-ю находились в твердом теле, а с 4-й по 17-ю — в воздухе.

Расчетное распределение температур по высоте рабочего участка представлено на рис. 3.

Рис. 3. Распределение температуры по высоте рабочего участка

2.2. Развитое течение в канале со сменной пластиной

Были проведены расчеты сопряженной задачи для развитого режима течения в канале с разными материалами (алюминий, асбест) нижней стенки.

Распределение температуры по высоте канала для пластины из асбеста представлено на рис.4.

Для типичной лунки в нескольких сечениях было получено отношение коэффициентов теплоотдачи по ширине и длине рассматриваемой области лунки. Коэффициент теплоотдачи определялся по следующей зависимости:

$$\alpha = \frac{Q}{F \cdot \left(T_w - \overline{T}_e\right)}.$$
(2)

Рис. 4. Распределение температуры по высоте нижней части рабочего участка (пластина из асбеста с 27 лунками)

Распределение температуры по поверхности лунки и в её окрестности имеет более неравномерный характер при меньшем коэффициенте теплопроводности. Однако относительный коэффициент теплоотдачи меняется незначительно, что, повидимому, связано с определяющим влиянием изменения гидродинамики течения в окрестности лунок.

Было проведено сравнение расчетных данных с результатами экспериментального исследования, проведенного в узком канале с низкотеплопроводным материалом нижней стенки [2]. Хотя в экспериментальной работе был рассмотрен более узкий канал и в качестве характерного ряда лунок исследовался 27 ряд, а не 8 как в случае математического моделирования, можно отметить, что отношения коэффициентов теплоотдачи для экспериментально и численного случая в центре самой лунки близки между собой, и качественно одинаково отражают изменение коэффициента теплоотдачи по рассматриваемому сечению по ширине пластины.

Рис.5. Распределение отношения α/α_0 по ширине пластины из асбеста для сечения 0.75 *D* от переднего края средней лунки вдоль *x*: • — расчетные данные; • — литературные данные

В работе было определёно давление в гладком канале и канале с лунками на входе и выходе. Было получено среднеинтегральное значение давления в каждом из рассмотренных сечений. В широком канале без лунок $\Delta p_{\Gamma \pi} = 3.34$ Па, в канале с лунками

$\Delta p_{\pi} = 4.267$ Па. Их соотношение $\frac{\Delta p_{\pi}}{\Delta p_{\Gamma\pi}} = 1.28$.

В узком канале без лунок $\Delta p_{\rm rn} = 16.11$ Па, а в канале с лунками $\Delta p_{\rm n} = 19.651$ Па. По результатам исследований можно сделать вывод об увеличении коэффициентов теплоотдачи для начального участка и развитого течения в канале с лунками относительно гладкого канала в случае численного моделирования в 1.32 раза, а для перепада давлений в 1.28 раза

1.28 раза.

Из анализа расчетных значений векторов скоростей на различных расстояниях от поверхности лунки получено, что образуются два вихря с фокусами, приближающимися к передней (по потоку) части лунки, которые выходят на срезе лунки под некоторым углом к центральной оси, что приводит к образованию зон присоединения и объясняет появление пониженных температур непосредственно за кромкой нижней (по потоку) части лунок.

Расчеты также выявляют зоны повышенного теплообмена на выходных участках лунок и прилегающих к ним областях, что совпадает с результатами эксперимента [1].

В работах [3] и [4] приводятся данные визуализации вблизи поверхности с лунками.

Из сравнения данных этих работ можно сделать вывод, что вихри из лунки выбрасываются на заметное расстояние от поверхности лунки (см. [3]) и на небольшое расстояние (см. [4]). Это связано с тем, что в экспериментах работы [3] исследовалось течение вдоль плоской пластины, а в работе [4] — в узком канале, т.е. заметно влияние продольного градиента давления на поведение вихрей. Полученные результаты позволяют предположить, что при выбросах нагретых масс воздуха в виде струй за счет завихрения происходит их перемещение со скоростями, превышающими небольшие скорости прилегающих к стенке слоев, которые увлекаются в основной поток. Это приводит к уменьшению температуры стенки и повышает коэффициент теплоотдачи в окрестности лунки. Этот же эффект приводит к уменьшению трения на поверхности по сравнению с гладкой поверхностью.

ЗАКЛЮЧЕНИЕ

Проведены расчеты при различных материалах поверхности и различных режимах течения. Результаты расчетов удовлетворительно согласуются с экспериментальными данными. Показано, что при изменении материала поверхности пластины относительный коэффициент теплоотдачи меняется незначительно, что, по-видимому, связано с определяющим влиянием гидродинамики течения в окрестности лунок.

Работа выполнена по гранту РФФИ-05-08-18265 в рамках НИР "Сложный теплообмен и возобновляемые источники энергии", государственный контракт от 05.09.2005 02.445.11.7099.

СПИСОК ОБОЗНАЧЕНИЙ

- *Q* тепловыделение, Вт;
- F площадь поверхности, м²;
- *T* температура, К;
- α коэффициент теплоотдачи, Bт/(м²·K);
- *D* диаметр лунки, м;
- Δp перепад давления, Па.
- Индексы:
- *w* стенка;
- в воздух;
- 0 или гл гладкая пластина;
- л пластина с лунками.

СПИСОК ЛИТЕРАТУРЫ

- Маскинская А.Ю., Мотулевич В. П., Сергиевский Э.Д. Экспериментальное исследование теплоотдачи в канале с лунками на нижней поверхности // Тр. Второй Российской конференции "Теплообмен и гидродинамика в закрученных потоках", 15-17 марта 2005.
- 2. Burgess N. K., Oliveira M.M., Ligrani P. M. Nusselt Number Behavior on Deep Dimpled Surfaces Within a Channel // Transactions of the ASME Journal of Heat Transfer. 2003. Vol. 125. P. 1-8.
- Алексеев В.В., Гачечиладзе И.А., Кикнадзе Г.И., Олейников В.Г. Смерчевой эффект на трехмерных вогнутых рельефах – структура самоорганизующихся течений, их визуализация и механизм обтекания поверхности // Тр. Второй Российской конференции по теплообмену. 2002. Т.6. С.33-42.
- 4. Ligrani P. M., Olivera M.M., Blaskovich T. Comparison of Heat Transfer Augmentation Techniques // AIAA Journal. 2003. Vol.41. No.3. P.337-362.