Е.А. Буланова, А.Н. Первышин

Самарский государственный аэрокосмический университет, Россия

ИССЛЕДОВАНИЕ ДВИЖЕНИЯ ДИСПЕРСНОЙ СРЕДЫ В НЕДОРАСШИРЕННОЙ СТРУЕ ПРОДУКТОВ СГОРАНИЯ

АННОТАЦИЯ

Разработаны математические модели движения частиц в газовом потоке для моно- и полидисперсного потока частиц. Получены зависимости энергетических характеристик недорасширенной сверхзвуковой двухфазной струи от параметров генератора сверхзвуковых струй и частиц. Проведено исследование влияния параметров на оптимум кинетической энергии частиц.

1. ВВЕДЕНИЕ

В настоящее время широко применяются такие струйные технологии, как нанесение покрытий сверхзвуковой струей продуктов сгорания, струйноабразивная обработка и резка материалов [1]. Эффективность таких процессов зависит как от импульсных, так и энергетических характеристик твердых частиц, транспортируемых газовым потоком продуктов сгорания. Поэтому расчетная оценка скорости (импульса, кинетической энергии) на всех этапах разработки струйных технологий способствует поиску оптимальных решений.

2. ДВИЖЕНИЕ МОНОДИСПЕРСНОЙ СРЕДЫ В ГАЗОВОМ ПОТОКЕ

2.1. Постановка задачи

Рассмотрим поток сферических частиц, движущийся со скоростью w_i в потоке продуктов сгорания, скорость которого w_{α} . Известны параметры частиц: диаметр d_i , плотность вещества ρ_i , расход \dot{m}_n , также известны все термодинамические параметры потока продуктов сгорания: вязкость η_{α} , давление p_{α} , температура T_{α} , плотность ρ_{α} , расход \dot{m}_{α} . В результате взаимодействия частиц с газовым потоком происходит обмен импульсом и соответствующее изменение скоростей.

2.2. Математическая модель

Уравнение движения частиц можно записать, используя закон сохранения импульса и второй закон Ньютона

$$\dot{m}_{\alpha} \cdot \vec{w}_{\alpha} + \sum_{i=1}^{N} \dot{m}_{i} \cdot \vec{w}_{i} = \text{const} ; \vec{P}_{i} = m_{i} \cdot \frac{d\vec{w}_{i}}{d\tau}, \qquad (1)$$

где P_i - сила, действующая на частицы со стороны потока продуктов сгорания.

В дальнейшем при рассмотрении воздействия газового потока на частицы будем учитывать лишь

аэродинамическую силу, так как действие остальных сил пренебрежимо мало. Величина аэродинамической силы определяется скоростью частицы относительно потока продуктов сгорания [2]:

$$\vec{P} = \frac{1}{2} \cdot c_i \cdot f_m \cdot \rho_\alpha \cdot (\vec{w}_\alpha - \vec{w}_i) \cdot |\vec{w}_\alpha - \vec{w}_i| , \qquad (2)$$

где f_m -площадь поперечного сечения частицы, $c_i = f(\text{Re}_{\text{отн}})$ -коэффициент сопротивления частицы, являющийся функцией числа Рейнольдса:

$$\operatorname{Re} = \frac{\left| \vec{w}_{\alpha} - \vec{w}_{i} \right| \cdot d_{i} \cdot \rho_{\alpha}}{\eta_{\alpha}}.$$

Из результатов многочисленных экспериментов со сферическими частицами, в соответствии со значениями коэффициента сопротивления, выделим три диапазона значений числа Рейнольдса [3]:

- 1) Re \geq 500, где $c_i \approx 0.44$;
- 2) промежуточный диапазон: $0, 2 \le \text{Re} \le 500$;
- 3) $\text{Re} \le 0, 2$, $c_i = \frac{24}{\text{Re}}$ закон Стокса.

Модифицируя закон Стокса, запишем коэффициент сопротивления в форме, пригодной для всех диапазонов числа Рейнольдса

В этой форме экспериментальные данные [3] для «мелких» частиц с $\text{Re} \le 300$ хорошо описываются при $n_i = 1$, а $\psi = f(\text{Re})$, а для «средних» частиц с Re от 30 до 1000 с достаточной точностью можно считать n = 0, 5, $\psi = 13$, т.е.

$$c_i = \frac{\Psi_i}{\sqrt{\text{Re}}} \,. \tag{3}$$

Диапазон «средних» частиц наиболее распространен в струйных технологиях, поэтому в дальнейшем будем использовать коэффициент сопротивления в форме (3).

Рассмотрим одномерную модель движения частиц в газовом потоке, считая, что все частицы имеют одинаковый диаметр, а «загромождением» потока продуктов сгорания дисперсной фазой можно пренебречь, так как $\rho_i \rangle \rho_{\alpha}$. При прохождении некоторого расстояния dx частицей происходит изменение импульса частицы и импульса газового потока.

$$\frac{\dot{m}_n}{\dot{m}_\alpha} = -\frac{dw_\alpha}{dw_i} = \gamma \quad ,$$

где γ - так называемый коэффициент запыленности, равный отношению расходов потоков частиц и продуктов сгорания (рис.1).

Рис. 1. Схема одномерного движения частиц в потоке продуктов сгорания

Или в интегральной форме

$$\int_{w_{\alpha 0}}^{w_{\alpha}} dw_{\alpha} = -\gamma \int_{w_{i0}}^{w_{i}} dw_{i} ;$$

$$w_{\alpha} = w_{\alpha 0} - \gamma (w_{i} - w_{i0}), \qquad (4)$$

где индексом «0» обозначены начальные параметры рабочих тел.

Сопоставляя (1) и (2) с учетом (3) и (4), получаем дифференциальное уравнение движения частицы:

$$\frac{dw_{i}}{d\tau} = A_{1} \Big[w_{\alpha 0} - \gamma \cdot (w_{i} - w_{i0}) - w_{i} \Big]^{1,5}, \qquad (5)$$

rge $A_{1} = \frac{\xi_{1}}{d_{i}^{1,5}}; \ \xi_{1} = \frac{3}{4} \cdot \frac{\psi \cdot \eta_{\alpha}^{0,5} \cdot \rho_{\alpha}^{0,5}}{\rho_{i}}.$

Обозначим $w_{\alpha 0} + \gamma \cdot w_{i0} = K$, тогда

$$\frac{dw_i}{d\tau} = A_1 \cdot \left[K - w_i \cdot (\gamma + 1) \right]^{1,5}.$$
(6)

Перепишем (6) в интегральной форме

$$\int_{w_{i1}}^{w_{i2}} \frac{dw_i}{\left[K - w_i \cdot (\gamma + 1)\right]^{1,5}} = \int_{\tau_1}^{\tau_{21}} A_1 d\tau.$$

После проведения ряда и преобразований получим аналитическую зависимость скорости частицы от времени взаимодействия

$$w_{i2} = \frac{K}{\gamma+1} - \frac{4B^2}{(\gamma+1) \cdot \left[A_1 \cdot B \cdot \Delta \tau \cdot (\gamma+1) + 2\right]^2}, \quad (7)$$

где $B = \sqrt{K - w_{i0} \cdot (\gamma + 1)}$.

Часто расчет движения частиц нужно вести с момента их ввода в поток продуктов сгорания, т.е. $w_{i1} = w_{i0}$, причем, так как $w_{\alpha 0} \rangle w_{i0}$, в большинстве случаев можно считать, что $w_{i0} = 0$. Тогда (7) упрощается

$$w_{i} = \frac{dx_{i}}{d\tau} = \frac{w_{\alpha 0}}{\gamma + 1} - \frac{4w_{\alpha 0}}{(\gamma + 1) \left[A_{1}\tau(\gamma + 1)\sqrt{w_{\alpha 0}} + 2\right]^{2}} .(8)$$

Интегрируя (8), можно определить положение частицы в зависимости от времени

$$x = \frac{K\tau}{1+\gamma} - \frac{2B^2\tau}{(1+\gamma)\left[A_1(1+\gamma)B\tau + 2\right]}.$$
(9)

Сопоставление (8) и (9) позволяет получить в явном виде зависимость скорости частицы от координаты.

3. ПОЛИДИСПЕРСНЫЙ ПОТОК ЧАСТИЦ В СТРУЕ ПРОДУКТОВ СГОРАНИЯ

Реальный поток частиц может иметь значительное расслоение по фракциям. Так при струйноабразивной обработке размеры варьируются от $d_i = 0,9$ мм до пыли, оседающей на крупных частицах. В расчетах для монодисперсного потока в составляющую скорости входит как характерный размер, так и число Рейнольдса в интервале: $0, 2 \ge \text{Re} \ge 500$.

Для приближения модели к реальным условиям, в ряде случаев необходимо учитывать в модели полидисперсность потока частиц.

3.1. Модель с учетом полидисперсности

Разобьем поток частиц на две составляющие, одна из которых будет иметь характерный размер d_{i1} , вторая - d_{i2} . Соответственно, в результате получим две скорости: w_{i1} , w_{i2} (рис. 2.)

Рис. 2. Схема одномерного движения полидисперсного потока частиц в потоке продуктов сгорания

Обозначая текущие параметры:

$$w_{\alpha} = w_{\alpha 2}, w_{i1} = w_{i12}, w_{i2} = w_{i22},$$

а начальные: $w_{\alpha 0} = w_{\alpha 1}$; $w_{i11} = w_{i10}$; $w_{i21} = w_{i20}$, и выполнив преобразования аналогично п.2.2, получим:

$$\begin{cases} \frac{dw_{i1}}{d\tau} = A_1 \cdot \left[K - (\gamma_1 + 1) \cdot w_{i1} - \gamma_2 \cdot w_{i2} \right]^{1,5} \\ \frac{dw_{i2}}{d\tau} = A_2 \cdot \left[K - \gamma_1 \cdot w_{i1} - (\gamma_2 + 1) \cdot w_{i2} \right]^{1,5}, \end{cases}$$
(10)

где $K = w_{\alpha 0} - \gamma_1 \cdot w_{i10} - \gamma_2 \cdot w_{i20}$.

Подобную систему для двух видов дисперсной фазы можно записать в координатах ОХ:

$$w_{i1} \cdot \frac{dw_{i1}}{dx} = A_1 \cdot \left[K - (\gamma_1 + 1) \cdot w_{i1} - \gamma_2 \cdot w_{i2} \right]^{1,5}, \\ w_{i2} \cdot \frac{dw_{i2}}{dx} = A_2 \cdot \left[K - \gamma_1 \cdot w_{i1} - (\gamma_2 + 1) \cdot w_{i2} \right]^{1,5}.$$
(11)

При рассмотрении потока с множеством диаметров d_i система примет более сложный вид:

$$\begin{cases} w_{i1} \frac{dw_{i1}}{dx} = A_1 \bigg[K_1 - (\gamma_1 + 1) w_{i1} \dots - \gamma_j w_{ij} \dots - \gamma_k w_{ik} \bigg]^{1,5}, \\ w_{i2} \frac{dw_{i2}}{dx} = A_2 \bigg[K_2 - \gamma_1 w_{i1} \dots - \gamma_j w_{ij} \dots - \gamma_k w_{ik} \bigg]^{1,5}, \\ \dots \\ w_{ij} \frac{dw_{ij}}{dx} = A_j \bigg[K_j - \gamma_1 w_{i1} \dots - (\gamma_j + 1) w_{ij} \dots - \gamma_k w_{ik} \bigg]^{1,5}, \\ w_{ik} \frac{dw_{ik}}{dx} = A_k \bigg[K_k - \gamma_1 w_{i1} \dots - \gamma_j w_{ij} \dots - (\gamma_k + 1) w_{ik} \bigg]^{1,5} \end{cases}$$
(12)

Или в другой форме:

$$\left\{w_{ij} \cdot \frac{dw_{ij}}{dx} = A_j \cdot \left[K_j^* - w_{ij}\right]^{1,5}\right\},\tag{13}$$

где
$$\gamma_j = \frac{\dot{m}_{ij}}{\dot{m}_{\alpha}}, \dot{m}_i = \sum \dot{m}_{ij}; \gamma = \sum_{j=1}^k \gamma_j ,$$

$$A_j = \frac{\xi_{ij}}{d_{ij}^{1.5}}; \xi_{ij} = \frac{3}{4} \cdot \frac{\psi \cdot \eta_{\alpha}^{0.5} \cdot \rho_{\alpha}^{0.5}}{\rho_{ij}},$$

$$K_j^* = K_j - \sum_{j=1}^k \gamma_j \cdot w_{ij};$$

$$K = w_{\alpha 0} - \sum_{j=0}^k \gamma_j \cdot w_{ij0} ,$$

т.е.

$$K_{j}^{*} = w_{\alpha 0} - \sum_{j=1}^{k} \gamma_{j} \cdot \left(w_{ij} - w_{ij0} \right).$$
(14)

Выражение (13) можно представить в конечных разностях (рис. 3.):

$$w_{\alpha(l+1)} = w_{\alpha l} - \sum_{j=1}^{k} \gamma_j \cdot \left(w_{ij(l+1)} - w_{ijl} \right), \tag{15}$$

где
$$\gamma_j = \frac{m_{ij}}{\dot{m}_{\alpha}}; \quad w_{ij(l+1)} = w_{ijl} + \Delta w_{ijl}.$$

Рис. 3. Схема движения частиц при конечном разбиении

Тогда

$$w_{ijl} \cdot \frac{\Delta w_{ijl}}{\Delta x} = A_j \cdot \left[K_j^* - w_{ijl} \right]^{1,5}, \tag{16}$$

где

$$K_{j}^{*} = w_{\alpha l} - \sum_{j=1}^{k} \gamma_{j} \cdot \left(w_{ij(l-1)} - w_{ijl} \right).$$
(17)

4. ПРИМЕНЕНИЕ МОДЕЛИ К ПОТОКУ ПРОДУКТОВ СГОРАНИЯ

Предложенные уравнения определяют зависимость скорости потока частиц w_i от параметров активного потока, а именно его скорости в месте ввода частиц $w_{\alpha 0}$, его вязкости η_{α} и плотности ρ_{α} ; от параметров дисперсной среды: диаметра частиц d_i и плотности материала частиц ρ_i ; от коэффициента, связывающего расход дисперсной среды и расход активного потока γ ; от конструктивного параметра – длины разгонного участка l:

$$v_i = f\left(w_{\alpha 0}, \eta_{\alpha}, \rho_{\alpha}, \gamma, d_i, \rho_i, l\right).$$
(18)

Импульс M_i и кинетическая энергия E_i потока частиц зависят, кроме того, от массовой характеристики дисперсной среды – расхода \dot{m}_n :

$$M_i, E_i = f\left(w_{\alpha 0}, \eta_{\alpha}, \rho_{\alpha}, \gamma, d_i, \rho_i, l, \dot{m}_n\right).$$
(19)

В ряде струйных технологий поток продуктов сгорания организуется генератором сверхзвуковых струй ракетного типа. Ввод частиц производится в минимальном сечении сопла, где реализуется звуковая скорость потока, с последующим разгоном частиц в свободной недорасширенной струе продуктов сгорания.

В этом случае зависимости (18,19) примут вид:

$$w_i = f\left(\alpha, p_K, K_{mCT}, \gamma, d_i, \rho_i, l\right), \tag{20}$$

$$M_i, E_i = f\left(\alpha, p_K, K_{mCT}, \gamma, d_i, \rho_i, l, \dot{m}_n\right).$$
(21)

В этих выражениях отражается влияние режимных параметров ГСС (коэффициент избытка окислителя α , давление в камере сгорания p_K) и системы подачи частиц (\dot{m}_n), вид топлива (K_{mCT}) и физико-механических свойств дисперсной фазы (d_i, ρ_i), а также конструктивного параметра l.

4.1. Расчет кинетической энергии частиц

При расчете конкретных установок, работающих на этом принципе, выбор длины разгонного участка определен конструктивным решением. С увеличением длины разгонного участка возрастает скорость, импульс и кинетическая энергия частиц, при одновременном торможении потока продуктов сгорания (рис. 4.)

Расчет выполнен для топлива пропан-воздух при $\alpha = 1,5$; $p_K = 3,5$ атм. Параметры дисперсной среды: $\dot{m}_n = 25$ г/с; $w_{i0} = 0$; $\rho_i = 2300$ кг/м³; $d_i = 0,6$ мм; $\gamma = 2,2$.

Изменение коэффициента избытка окислителя приводит к изменению скорости потока продуктов сгорания $w_{\alpha 0}$, но при постоянном диаметре минимального сечения сопла и постоянном расходе топлива \dot{m}_{α} максимальное значение всех параметров эффективности достигается при $\alpha = 1, 0$.

Рис. 4. Зависимости скорости и кинетической энергии частиц от расстояния

Рис. 5. Зависимость кинетической энергии частиц SiO 2 от коэффициента запыленности

В устройствах для струйных технологий распространено использование «бедных» смесей ($\alpha \ge 1,0$) из экономических соображений и обеспечения надежности и теплового состояния конструкции. Поэтому все последующие расчеты ведутся для $\alpha = 1,5$.

Коэффициент запыленности γ при постоянном \dot{m}_{α} определяет величину \dot{m}_{n} . Причем при $\gamma = 0$ решение для потока частиц соответствует решению одиночной частицы [4]. С ростом γ скорость частиц w_{i} уменьшается, а импульс растет. Это приводит к появлению максимума энергии дисперсной среды

при некотором коэффициенте запыленности γ_{opt} (рис.5).

Величина γ_{opt} не зависит от α в диапазоне 0,5...1,5. Но с ростом p_K коэффициент γ_{opt} уменьшается при общем росте энергетики, а с ростом d_i коэффициент γ_{opt} увеличивается при падении энергетики дисперсной среды.

ЗАКЛЮЧЕНИЕ

На основе полученных зависимостей разработана математическая модель движения твердых частиц в потоке продуктов сгорания. Данная модель может применяться для исследования влияния параметров потока и частиц на импульсные характеристики частиц.

СПИСОК ОБОЗНАЧЕНИЙ

ГСС – генератор сверхзвуковых струй продуктов сгорания;

- *m* массовый расход, кг/с;
- *w* скорость, м/с;
- α коэффициент избытка воздуха;
- ү коэффициент запыленности;
- M импульс, кг·м/с;

СПИСОК ЛИТЕРАТУРЫ

- 1. Первышин А.Н. Проблемы и перспективы развития двигателестроения в поволжском регионе / Тр. Междунар. науч.-техн. конф. 17-18 сентября 1997 г. // Энергетика струйных технологий. Самара: СГАУ, 1997. Вып.1. 4 с.
- **2. Венедиктов В.Д.** Турбины и реактивные сопла на двухфазных потоках. М.: Машиностроение, 1969. 195с.
- **3. Стернин Л.Е.,Шрайбер А.А.** Многофазные течения газа с частицами. М.: Машиностроение, 1994. 320 с.
- 4. Жукова Л.Ю, Первышин А.Н., Ткаченко А.Ю. Проблемы и перспективы развития двигателестроения в поволжском регионе / Тр. Междунар. науч.-техн. конф. 26-27 июня 2003 г. // К вопросу о скорости движения твердой частицы в газовом потоке. Самара: СГАУ, 2003. Вып.2. 2 с.