C.A. Исаев¹, Н.В. Корнев², В.Б. Харченко¹

Санкт-Петербургский государственный университет гражданской авиации, Россия (1) Университет, Росток, Германия (2)

АНАЛИЗ СМЕРЧЕВОЙ ИНТЕНСИФИКАЦИИ ТЕПЛООБМЕНА НА ОБЛУНЕННЫХ СТЕНКАХ УЗКИХ КАНАЛОВ. ТЕПЛОВОЕ ПРОЕКТИРОВАНИЕ

АННОТАЦИЯ

Проблема теплового проектирования луночных рельефов на стенках каналов решается в рамках концепции организации в пристеночном слое упорядоченных струйно-вихревых структур, формирующих высокоинтенсивное вторичное течение, на основе предложенных траншейных лунок. Рассмотрены важные вопросы влияния на интенсификацию теплообмена радиуса скругления лунок и кривизны стенок канала.

1. ВВЕДЕНИЕ

Обобщающий подход к проблеме конструирования рельефов, обладающих повышенной теплоотдачей за счет генерирования высокоинтенсивных смерчеобразных вихревых структур, возник на основе сравнительного анализа двумерных и пространственных конфигураций криволинейных вогнутостей, т.е. траншей и лунок. Он реализовался в так называемых траншейных лунках, т.е. фактически в асимметричных лунках с цилиндрическими вставками [1]. Однако, если первоначально эти формы вогнутостей появились как технологически улучшенные конфигурации эллиптических лунок, то теперь они возникли как результат перехода от двумерных траншей к трехмерным кавернам конечного размаха (L+1) [2]. Закономерен вопрос, являются ли сферические лунки оптимальными по интенсификации теплообмена? Ведь в многочисленных, прежде всего экспериментальных, исследованиях использовались именно сферические лунки, и указанный вопрос даже не возникал. Конечно, причина такого невнимания к форме лунок вполне понятна. Сферические лунки просты в реализации. Это еще раз свидетельствует о том, что в тепловом проектировании рельефов с высокой теплоотдачей преобладают пока инженерно-конструкторские подходы. Не говоря уже о применении луночных покрытий из соображений дизайна. В то время как требуется подходить к созданию обладающего высокой теплогидравлической эффективностью луночного рельефа на основе аэродинамического проектирования вихревой структуры обтекания, наиболее благоприятной для создания высокого теплоотвода.

В монографиях [3-5], а также в многочисленных зарубежных публикациях (прежде всего Лиграни) по луночной проблематике основное внимание уделяется лункам с острыми кромками. Лишь в [3] обращается внимание на скругление кромки сферической лунки, хотя предложенное соотношение для радиуса скругления $r > 0.3\Delta$, где Δ - глубина лунки, не выглядит обоснованным.

Аналогично в подавляющем большинстве работ рассматриваются плоские стенки с нанесенными лунками и лишь фрагментарно (см., например, в [4,5]) анализируется теплообмен на криволинейных стенках с лунками.

В данной работе акцент делается на исследование влияния на интенсификацию теплообмена радиуса скругления кромки лунки и радиуса кривизны стенок канала с постоянным проходным сечением.

Рис. 1. Схема расположения сферической лунки на плоской стенке узкого канала (со снятой верхней стенкой)

2. МАТЕМАТИЧЕСКАЯ И ДИСКРЕТНАЯ МОДЕЛИ

Вихревой теплообмен при турбулентном движении вязкой несжимаемой жидкости вдоль стенки с лунками в узком канале описывается системой уравнений Рейнольдса, замкнутых с помощью модели переноса сдвиговых напряжений [6], и уравнений энергии. Исходная система уравнений решается с помощью многоблочных вычислительных технологий, реализованных в пакете VP2/3 [2].

В качестве характерных параметров задаются диаметр сферической лунки D, максимальная (или среднемассовая) скорость потока и температура (T=293K) во входном сечении. Поверхность с лункой нагревается до 373K. Противоположная стенка поддерживается при "комнатной" температуре. В качестве теплоносителя рассматривается воздух.

3. ВЛИЯНИЕ РАДИУСА СКРУГЛЕНИЯ КРОМКИ ЛУНКИ НА ВИХРЕВОЙ ТЕПЛООБМЕН В ОБЛУНЕННОМ КАНАЛЕ

Узкий канал высотой H=0.3 представляет собой (рис. 1) две плоские параллельные стенки с распо-

ложенной на одной из них глубокой сферической лункой глубиной 0.22. На входе задается равномерный профиль с толщиной пограничного слоя у стенок 0.14. С боковых сторон и на выходе канал открыт, и на проточных границах ставятся "мягкие" граничные условия. Степень турбулентности на входе 0.5%, а масштаб турбулентности порядка D.

В первой серии численных экспериментов радиус скругления кромки варьируется от 0.05 до 0.4 при фиксированном D, как показано на рис.2. Число Рейнольдса выбрано равным 10⁴.

ми скругления кромки: r=0.05 (a); 0.1 (б); 0.2 (в); 0.4 (г)

a

в

Рис. 3. Картины растекания и поля относительных локальных тепловых нагрузок на стенке канала со сферической лункой при r = 0.05 (a), 0.1 (б), 0.2 (в), 0.4 (г): 1 - $Nu/Nu_{pl}=0.2$; 2 - 0.6; 3 - 1; 4 - 1.2; 5 - 1.4; 6 - 1.8; 7 - 2.2; 8 - 2.6; 9 - 3; 10 - 3.4

Важно отметить, что варьирование r при одинаковом диаметре приводит к существенному изменению формы центральной части лунки (рис.2) и уменьшению пространства вогнутости.

Таблица 1. Сравнение относительных суммарных теплоотводов, гидравлических потерь и теплогидравлической эффективности (ТГЭ) канала со сферической лункой при различных r

Рис. 4. Осредненные по полосе с лункой относительные тепловые нагрузки в продольном (а) и поперечном (б) направлениях для сферических лунок с различными r: 1 - r = 0.05; 2 - 0.1; 3 - 0.2; 4 - 0.4

На рис.3, 4 и в табл. 1 приведены некоторые из полученных результатов. Как и в двумерном случае [2], скругление кромок приводит к уменьшению максимума локальных тепловых нагрузок и относительного теплоотвода от участка с лункой. Несмотря на монотонное падение гидравлических потерь, ТГЭ также постепенно понижается.

Вторая серия численных экспериментов выполнена для заданного канала со сферической и траншейной лунками с прогрессирующим скруглением кромки, но с сохранением радиуса кривизны контура в центральной части (рис.5). При этом $\Delta = 0.22$, H = 0.3, а D оказывается переменным. Определенное по диаметру лунки при r=0 число Рейнольдса выбрано равным 2.35×10⁴.

Траншейная лунка имеет удлинение цилиндрической части L = 1 с наклоном $\phi = 60^{\circ}$ по отношению к направлению потока на входе. При такой ориентации участок с лункой обладает максимальным теплоотводом.

Рис. 5. Сравнение форм лунок с различными радиусами скругления кромки: *r*=0.4 (*a*); 0.2 (*б*); 0.1 (*в*)

Рис. 6. Картины растекания и поля относительных, локальных тепловых нагрузок на стенке канала со сферической лункой при r=0.02 (*a*), 0.1 (δ), 0.2 (*b*), 0.4 (*c*). Нумерация кривых такая же, как и на рис.3

Рис. 7. Осредненные по полосе с лункой относительные тепловые нагрузки в поперечном направлении для сферических (1-3) и траншейных (4-6) лунок с различными *r*: 1,4 – *r*=0.02; 2,5 – 0.2; 3,6 – 0.4

Рис. 8. Картины растекания и поля относительных, локальных тепловых нагрузок на стенке канала с траншейной лункой при r=0.02 (*a*), 0.2 (б), 0.4 (*в*), 0.8 (*г*): Нумерация кривых такая же, как и на рис. 3

Рис. 9. Влияние радиуса скругления r сферической (1,3,5) и траншейной (2,4,6) лунок на Nu/Nu_{pl}, ξ/ξ_{pl} и ТГЭ участка, окружающего лунку, размером 3×2

В отличие от первой серии влияние на теплообмен r при сохранении формы лунки в центральной части оказывается намного сильнее, что продемонстрировано на рис. 6-9.

Показано значительное преимущество траншейных лунок по сравнению со сферическими, как по локальным и интегральным тепловым потокам, так и по ТГЭ. Оказалось, что лунка с острыми кромками отнюдь не является наилучшей по максимальному теплоотводу от участка с лункой. Существует оптимальный радиус скругления *r*, при котором Nu/Nu_{pl} и ТГЭ имеют наибольшие значения.

Рис. 10. Каналы с периодическими сферическими лунками (Δ =0.2; *r*=0.25) на выпуклой (*a*), плоской (*б*) и вогнутой (*в*) стенках узкого канала

Рис. 11. Осредненные поперек полосы с лунками относительные тепловые нагрузки для сферических лунок на цилиндрической (1), плоской (2) и трубной (3) поверхности

4. ВЛИЯНИЕ НА ТЕПЛООБМЕН КРИВИЗНЫ СТЕНКИ КАНАЛА С ЛУНКАМИ

Рассмотрены криволинейные каналы (H = 0.8), как показано на рис. 10, с периодическими сферическими лунками при расстоянии между центрами 1.8. Радиус кривизны вогнутой и выпуклой стенок равен 3. Число Рейнольдса – 10^4 . На проточных границах ставятся периодические условия, на омываемых стенках – условия прилипания. Стенка с лунками нагревается до 373 K, а противоположная поддерживается при T = 293K. Боковые стенки теплоизолированные.

Таблица 2. Сравнение относительных суммарных теплоотводов, гидравлических потерь и теплогидравлической эффективности (ТГЭ) канала с периодической лункой на стенках разной кривизны

Тип стенки	Nu/Nu _{pl}	ξ/ξ _{pl}	$(Nu/Nu_{pl})/(\xi/\xi_{pl})$
Цилиндр	1.27	1.17	1.09
Плоскость	1.33	1.19	1.12
Труба	1.37	1.21	1.13

Из рис. 11 и табл. 2 следует, что наблюдается тенденция к увеличению теплоотвода и гидравлических потерь при переходе от цилиндрической к вогнутой стенке с лункой, при этом ТГЭ увеличивается.

5. ЗАКЛЮЧЕНИЕ

Тепловое проектирование луночных рельефов целесообразно проводить на основе траншейных лунок. Скругление острых кромок сферических и траншейных лунок при сохранении формы их центральной части существенно улучшает их теплогидравлические характеристики.

Данная работа выполнена при поддержке РФФИ (проекты №05-01-00162, 06-08-81005, 05-02-16184) и Фонда "Научный потенциал".

СПИСОК ОБОЗНАЧЕНИЙ

х, у, z – декартовы координаты;

- Н высота канала;
- Δ , *r* глубина, радиус скругления сферических лунок;
- Re, Pr, Nu числа Рейнольдса, Прандтля и Нуссельта; Т –температура;
- ξ коэффициент гидравлических потерь;
- $TГЭ = (Nu/Nu_{pl})/(\xi/\xi_{pl}) теплогидравлическая эффектив-$
- ность. Инлексы:
- pl параметры на базовой плоской или криволинейной стенке (без лунки).

СПИСОК ЛИТЕРАТУРЫ

- Интенсификация смерчевого турбулентного теплообмена в асимметричных лунках на плоской стенке / С.А. Исаев, А.И. Леонтьев, А.В. Митяков, И.А. Пышный // ИФЖ. 2003. Т.76. №2. С. 31-34.
- Численное моделирование вихревой интенсификации теплообмена в пакетах труб / Ю.А. Быстров, С.А. Исаев, Н.А. Кудрявцев, А.И. Леонтьев. СПб.: Судостроение, 2005. 398 с.
- Кикнадзе Г.И., Гачечиладзе И.А., Алексеев В.В. Самоорганизация смерчеобразных струй в потоках вязких сплошных сред и интенсификация тепломассообмена, сопровождающая это явление. М.: Издательство МЭИ, 2005. 84 с.
- Халатов А.А. Теплообмен и гидродинамика около поверхностных углублений (лунок). Киев: ИТТФ, 2005. 76 с.
- Щукин А.В., Козлов А.П., Агачев Р.С., Чудновский Я.П. Интенсификация теплообмена сферическими выемками при воздействии возмущающих факторов / Под. ред. акад. В.Е.Алемасова. Казань: КГТУ, 2003. 143 с.
- Menter F.R. Zonal two equation k-ω turbulence models for aerodynamic flows // AIAA Paper. 1993. № 93-2906. 21 p.