А.А. Анисин

Брянский государственный технический университет, Брянск, Россия

ТЕПЛООТДАЧА И АЭРОДИНАМИЧЕСКОЕ СОПРОТИВЛЕНИЕ ПОПЕРЕЧНО ОБТЕКАЕМЫХ КОРИДОРНЫХ ПУЧКОВ ГЛАДКИХ ТРУБ С ПОВЕРХНОСТЬЮ РАЗЛИЧНОЙ ФОРМЫ

АННОТАЦИЯ

Приведены результаты экспериментальных исследований средней теплоотдачи и аэродинамического сопротивления поперечно обтекаемых потоком воздуха симметричных коридорных пучков гладких труб с поверхностью различной формы: цилиндрической, конической, коническо-цилиндрической. Анализ теплоаэродинамических характеристик опытных вариантов трубчатой поверхности показал существенное преимущество теплоэнергетической эффективности поперечно обтекаемых коридорных пучков труб с указанной сложной конфигурацией по сравнению с показателями эффективности традиционных коридорных пучков цилиндрических труб одинакового диаметра. Установлено, что среди исследованных конструктивных типов трубчатой поверхности наиболее рациональной в отношении повышения эффективности теплоотдачи поперечно обтекаемых симметричных коридорных пучков труб является поверхность с коническо-цилиндрической формой.

1. ВВЕДЕНИЕ

Интенсификация конвективного теплообмена, направленная на повышение тепловой эффективности и снижение металлоёмкости и габаритов энергетического оборудования, является важной проблемой современного технического развития. По-прежнему актуальна задача интенсификации теплообмена в поперечно обтекаемых пучках гладких круглых цилиндрических труб, широко используемых в теплообменных аппаратах и устройствах различного назначения. Пути совершенствования трубчатых теплообменных аппаратов в значительной мере связаны с поиском наиболее эффективных поверхностей нагрева с различной обтекаемой формой поперечного сечения труб, геометрией и схемами их расположения в потоке теплоносителя, обеспечивающими наибольшую интенсификацию теплообмена. Как было показано в [1], использование поперечно обтекаемых коридорных пучков цилиндрических труб разных диаметров d_1 и d_2 $(d_1 > d_2)$ [2] или труб с цилиндрическими участками поверхности разных диаметров d_1 и d_2 $(d_1 > d_2)$ [3] позволяет за счёт более благоприятных гидродинамических условий обтекания дополнительно интенсифицировать теплоотдачу и повысить энергетическую эффективность поверхности теплообмена по сравнению с показателями традиционных симметричных коридорных пучков труб одинакового диаметра [4].

В этой связи научный и практический интерес представляет исследование теплогидродинамических характеристик коридорных пучков труб с конической поверхностью, обусловленной разными концевыми диаметрами трубы d_1 и d_2 $(d_1 > d_2)$ [5], а также исследование другого нового конструктивного варианта поверхности труб с конфигурацией, сочетающей элементы представленных выше цилиндрической и конической поверхностей (рис. 1 а, б), в виде чередующихся по длине трубы цилиндрических участков с разными, большим d_1 и меньшим d_2 наружными диаметрами, и, соединяющих их, сопоставимых с ними по длине, конфузорных и диффузорных участков трубчатой конической поверхности с оптимальными углами раскрытия диффузоров внутритрубного канала (рис. 1 в).

Рис. 1. Геометрия опытных вариантов поверхности теплообмена

2. ОПЫТНЫЕ ВАРИАНТЫ ПОПЕРЕЧНО ОБТЕКАЕМОЙ ТРУБЧАТОЙ ПОВЕРХНОСТИ

Как и при исследовании пучков труб с разновеликой цилиндрической поверхностью [4], заслуживает внимания оценка влияния на теплоотдачу и аэродинамическое сопротивление плотных симметричных пучков труб с заданными геометрическими параметрами конической и коническоцилиндрической поверхности величины шага *s* квадратной разбивки.

Опытные варианты поверхности теплообмена и в этом случае представляли собой вертикальные "бесконечные" симметричные пучки гладких латунных труб длиной L = 100 мм с линейной (коридорной) схемой расположения и различной конфигурацией (рис. 1): пучки 1...3 конусоидальных труб с концевыми диаметрами $d_1 = 11$ мм

	. 1					Re ₁ Re',
		а	п	b	т	Re'Re ₂
1		0.1318	0.76	12.809 33.88	0.12	2003316 331610 ⁴
2		0.1419	0.78	28.08 70.63	0.12	3002179 217910 ⁴
3		0.1678	0.8	104.89 392.193	- 0.18	4501520 152010 ⁴
4		0.211	0.72	18.1 42.85	0.12	3701315 131510 ⁴
5		0.222	0.73	30.67 88.308	- 0.14	4501908 190810 ⁴
6		0.19	0.78	91.6 342	- 0.18	5001508 150810 ⁴
7		0.288	0.68	15.238 44.258	- 0.14	2502030 203010 ⁴
8		0.324	0.68	26.683 78.52	- 0.14	2502229 222910 ⁴
9		0.375	0.69	96.794 252.34	0.14	250938 93810 ⁴
10		0.324	0.65	18.4 46.55	0.12	6302286 228610 ⁴

Таблица. Коэффициенты и показатели степени критериальных уравнений теплоотдачи и сопротивления опытных пучков труб с различной конфигурацией поверхности

 $d_2 = 8$ мм и пучки 4...6 конусоидально-цилиндрических труб в виде чередующихся по длине вдоль оси трубы конфузорных, цилиндрических с $d_1 = 11$ мм и $d_2 = 8$ мм и диффузорных участков одинаковой длины l = 8.333 мм ($l/d_{max} \approx 0.8$), определяющей оптимальный угол раскрытия диффузоров внутреннего канала трубы и соответственно полуугол конусности внешней поверхности конических участков — $\beta_{OПT} \approx 10^{\circ}$ [6]. Размеры всех опытных пучков определялись шагами разбивки s = 14.5, 13 и 11.5 мм с числом поперечных рядов труб по ходу потока $z_2 = 12$ и продольных $z_1 = 4$. При этом площадь проекции трубы переменного сечения каждого конструктивного типа на фронтальную плоскость одинакова и составляет $9.5 \cdot 10^{-4}$ м².

Экспериментальные исследования теплоаэродинамических характеристик поперечно обтекаемых потоком воздуха пучков труб проводились методом полного теплового моделирования и представлялись в виде зависимостей Nu = f(Re) и Eu = f'(Re). В качестве определяющих параметров при обработке опытных данных принимались значения средней температуры потока воздуха t_f , его скорости в свободном сечении гладкого воздушного канала теплообменника диаметра W_{∞} , наружного труб $d_1 = 11 \text{ мм}$. Граничные условия на поверхности стенки с высокой теплопроводностью соответствовали $t = t_w = \text{const}$.

3. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕНИЕ

Результаты исследования средней теплоотдачи и аэродинамического сопротивления опытных пучков конусоидальных и конусоидально-ци-1...6 линдрических труб представлены в таблице в виде коэффициентов *a* и *b* и показателей степени *n* и *m* в соответствующих уравнениях подобия теплоотдачи $Nu = aRe^n$ и сопротивления $Eu = bRe^{-m}$. Дополнительно в таблице для более исчерпывающей полноты сравнения тепловых характеристик приведены по результатам работы [4] коэффициенты и показатели степени в уравнениях подобия теплоотдачи и сопротивления идентичных пучков 7...9 труб с разновеликими цилиндрическими участками и базового коридорного пучка 1,45 × 1,45 цилиндрических труб одинакового диаметра *d* = 11 *мм* (табл., п. 10).

Согласно полученным степенным зависимостям $Nu = aRe^n$ и $Eu = bRe^{-m}$ (табл., п. 1...9) изменение интенсивности теплоотдачи и величины сопротивления в области выраженного смешанного обтекания при $Re = 10^4$ каждого из пучков труб с конической (1...3) и коническо-цилиндрической (4...6) поверхностью по отношению к характеристикам одинаковых с ними по шагам разбивки пучков 7...9 труб с разновеликими цилиндрическими участками поверхности выглядит следующим образом: $Nu_1/Nu_7 = 0.925$ и $Eu_1/Eu_7 = 0.92$;

$Nu_2/Nu_8 = 1.1$ и Eu_2/E	$Eu_8 = 1.08$; $Nu_3 / Nu_9 = 1.2$	233
и $Eu_3/Eu_9 = 1.075$;	$Nu_4/Nu_7 = 1.059$	И
$Eu_4/Eu_7 = 1.164$;	$Nu_5/Nu_8 = 1.086$	И
$Eu_5/Eu_8 = 1.125$;	$Nu_{6}/Nu_{9} = 1.16$	И

 $Eu_6/Eu_9 = 0.937$. Из представленных соотношений видно, что в указанной области обтекания средняя теплоотдача пучков конусоидальных и конусоидально-цилиндрических труб несколько выше уровня теплоотдачи пучков цилиндрических труб с соответствующей плотностью компоновки (за исключением наиболее свободного пучка 1 труб с конической поверхностью и межтрубными зазорами $\delta = 5$ мм). Причём относительная величина теплоотдачи каждого из пучков конусоидальных труб больше, чем относительное сопротивление, что характеризует некоторый опережающий рост теплоотдачи по сравнению с повышением сопротивления при переходе от цилиндрической формы поверхности труб в пучках к конической.

Относительная величина сопротивления пучков 2 и 3 конусоидальных труб и пучков 4...6 конусоидально-цилиндрических с повышением плотности квадратной разбивки снижается, что указывает на сокращение темпа роста сопротивления в пучках труб с конической поверхностью по сравнению с изменением сопротивления пучков 7...9 цилиндрических труб при последовательном уменьшении шага разбивки s с 14.5 до 11.5 мм. Вместе с тем соотношение характеристик теплоотдачи и сопротивления пучка 7 труб с разновеликими цилиндрическими участками поверхности и базового пучка 10 цилиндрических труб постоянного сечения с одинаковыми шагами разбивки при $Re = 10^4$ составляет $Nu_7/Nu_{10} = 1.082$ и $Eu_7/Eu_{10} = 0.578$ и теплоэнергетическая эффективность поверхности трубного пучка 7 в среднем на 28 % выше, чем эффективность пучка 10.

По абсолютной величине коэффициенты теплоотдачи опытных трубчатых поверхностей различаются незначительно. Однако показатель степени *n* при числе Re в уравнении подобия теплоотдачи $Nu = aRe^{n}$ (тангенс наклона кривых Nu = f(Re)) для пучков труб с конической и коническоцилиндрической поверхностью становится существенно больше, чем для пучков труб с разновелики-ΜИ цилиндрическими участками: n = 0.68 и 0.69 – для пучков 7...9 труб с цилиндрическими участками, *n* = 0.76; 0.78 и 0.8 – для пучков 1...3 конусоидальных труб, n = 0.72, 0.73 и 0.78 – для пучков 4...6 конусоидально-цилиндрических труб. Разные значения показателя степени n, по всей вероятности, связаны с различной структурой турбулентного потока, которая образуется на границе раздела между ядром потока и пристенным слоем. Более заметный рост абсолютных значений коэффициентов теплоотдачи в области высоких в исследованном диапазоне чисел Re, очевидно, является результатом дополнительной турбулизации потока, обусловленной его взаимодействием с поверхностью пучков линейно расположенных конусоидальных и конусоидально-цилиндрических труб и активизацией механизма процесса переноса в их рециркуляционных зонах по сравнению с пучками цилиндрических труб с разной конфигурацией.

Как отмечается в [7], в области выраженного смешанного обтекания при Re = 10⁴ зависимость сопротивления коридорных пучков труб от числа Рейнольдса приобретает степенной характер. Показатель степени *m* при числе Re в уравнении подобия сопротивления $Eu = bRe^{-m}$ зависит от плотности компоновки пучка. Для опытных пучков 1, 2 и 4 труб с конической и коническо-цилиндрической поверхностью, как и для базового пучка 10 цилиндрических труб одинакового диаметра, показатель степени m = 0.12. Для всех опытных пучков 7...9 труб с разновеликими цилиндрическими участками и пучка 5 конусоидально-цилиндрических труб m = 0.14. Для наиболее плотных пучков 3 и 6 труб с конической и коническо-цилиндрической поверхностью показатель степени при числе Re возрастает до значения m = 0.18, близкого к значению m = 0.25, соответствующему закономерностям турбулентного течения потока в гладком изолированном канале.

На основании результатов сравнения энергетической эффективности исследованных вариантов поперечно обтекаемой трубчатой поверхности в виде тепловых комплексных характеристик $Q/F\Delta \bar{t} = \alpha = f(Q/N\Delta \bar{t})$ на рис. 2 показана динамика изменения относительного коэффициента теплоотдачи $\overline{\alpha} = \alpha_i / \alpha_{1.45 \times 1.45}$ опытных пучков труб с цилиндрической (кр. 1), конической (кр. 2) и коническоцилиндрической (кр. 3) формой поверхности в зависимости от условного относительного шага разбивки s/d1 при различных значениях энергетического коэффициента $Q/N\Delta \bar{t} = 10$, 1 и 0.1 K⁻¹ (α_i — коэффициент теплоотдачи соответствующих опытных пучков 1...9 труб с различной конфигурацией; $\alpha_{1.45 \times 1.45}$ — коэффициент теплоотдачи базового коридорного пучка 10 труб с d = 11 мм).

Как видно из рис. 2, в области небольших массовых скоростей потока ($Q/N\Delta \overline{t} = 10 \text{ K}^{-1}$) для каждого конструктивного типа трубчатой поверхности максимум тепловой эффективности соответствует пучкам с относительным шагом $s/d_1 = 1.18$. Максимальное значение тепловой эффективности симметричных коридорных пучков труб одинакового диаметра по данным [7] соответствует пучкам с шагами s/d = 1.11. Для опытных пучков 7...9 труб с разновеликими цилиндрическими участками отмеченный максимум тепловой эффективности поверхности сохраняется во всём исследованном диапазоне изменения энерге- $Q/N\Delta \bar{t} = 10...0.1 \text{ K}^{-1}$ коэффициента тического (кр.1). Для пучков труб с конической (кр. 2) и коническо-цилиндрической (кр. 3) поверхностью с увеличением массовой скорости потока теплоносителя и плотности компоновки эффективность теплоотдачи существенно возрастает (при $Q/N\Delta t = 1 \text{ K}^{-1}$ и $0.1 \,\mathrm{K}^{-1}$).

Рис. 2. Динамика изменения зависимости $\overline{\alpha}_i = \alpha_i / \alpha_{1.45 \times 1.45} = f(s/d_1; Q/N\Delta \overline{t})$ Рис. 3. Зависимость $\overline{\alpha}_{i cp} = f(s/d_1)$ для пучков труб с цилиндрической (1), конической (2), и коническо-цилиндричес- при $Q/N\Delta \overline{t} = 10...0.1 \ K^{-1}$. кой (3) формой поверхности.

На рис. З показана средняя величина относительного коэффициента теплоотдачи $\overline{\alpha}_{cp}$ опытных пучков труб 1...9, соответствующая крайним значениям диапазона изменения $O/N\Delta t = 10 \text{ K}^{-1}$ 0.1 K^{-1} , в зависимости от шага s/d_1 . Из рис. 3 видно, что эффективность пучков труб с коническоцилиндрической поверхностью (кр. 3) превосходит тепловую эффективность соответствующих пучков конусоидальных труб (кр. 2) с межтрубными зазорами $\delta = 5$ и 3,5 мм, а также пучков цилиндрических (кр. 1) с $\delta = 3.5$ труб и 2 мм, в определённой мере компенсируя их пониженную тепловую эффективность в области не- $(O/N\Delta \overline{t} = 10 \text{ K}^{-1})$ больших И высоких $(Q/N\Delta \overline{t} = 0,1 \text{ K}^{-1})$ массовых скоростей потока теплоносителя.

4. ЗАКЛЮЧЕНИЕ

Представленные результаты исследований эффективности поперечно обтекаемых пучков труб с цилиндрической, конической и коническоцилиндрической формой поверхности показывают, что коническо-цилиндрическая форма трубчатой поверхности является наиболее рациональной в плане внешнего воздействия на поток и повышения теплоэнергетической эффективности поперечно обтекаемых коридорных пучков гладких труб по сравнению с предложенными для практического применения разновеликими цилиндрическими и конусоидальными трубами, а также традиционными цилиндрическими трубами постоянного поперечного сечения.

СПИСОК ЛИТЕРАТУРЫ

- Анисин А.А. Интенсификация конвективного теплообмена при поперечном обтекании газовым потоком трубчатых поверхностей // Труды 13-й Школысеминара молодых учёных и специалистов под руководством академика РАН А.И.Леонтьева. Т.2. М.: Изд-во МЭИ, 2001. С. 361 – 365.
- Пат. RU 2006780 С1.Трубчатый теплообменник / В.И.Евенко, А.К.Анисин, Б.В.Порошин, В.В.Евенко // БИ. 1994. № 2.
- Пат. RU 2171439 С1. Трубчатый теплообменник / А.А.Анисин, А.К.Анисин, В.Т.Буглаев // БИ. 2001. № 21.
- Анисин А.А. Теплоотдача и аэродинамическое сопротивление поперечно обтекаемых коридорных пучков гладких труб со сложной конфигурацией // Труды 15-й Школы-семинара молодых учёных и специалистов под руководством академика РАН А.И.Леонтьева. Т.2.М.: МЭИ, 2005. С. 129-132.
- Пат. RU 2170898 С1. Трубчатый теплообменник / В.Т.Буглаев, А.К.Анисин, А.А.Анисин // БИ. 2001. № 20.
- Суза Мендес, Спэрроу. Турбулентный теплообмен и его интенсификация, потери давления и картины течения жидкости в трубах с периодическим сужением и расширением проходного сечения // Тр. ASME. Теплопередача. 1984. №1. С. 57–67.
- 7. Жукаускас А., Улинскас Р. Теплоотдача поперечно обтекаемых пучков труб. Вильнюс: Мокслас, 1986. 204 с.