В.Н. Буз¹, В.В. Горин², Н.И. Гоголь³

Одесский национальный университет им. И.И.Мечникова, Украина (1) Национальный технический университет Украины «Киевский политехнический институт», Украина (2) Одесская государственная академия холода, Украина (3)

МОДЕЛИРОВАНИЕ ПОЛНОЙ КОНДЕНСАЦИИ ПАРА ВНУТРИ ТРУБЫ

АННОТАЦИЯ

Проведенный анализ показал различие в 3-4 раза между результатами расчета коэффициента теплоотдачи при конденсации в трубе по различным литературным зависимостям. Рассмотрены три расчетные модели — модель локального теплообмена при кольцевом течении пленки жидкости в трубе, модель полной конденсации пара при пренебрежимой роли сил тяжести и модель конденсации с учетом сил тяжести. В результате численного решения системы уравнений можно определить значения коэффициентов теплоотдачи при любом сочетании режимов течения пара и жидкой пленки. Представлены примеры результатов расчетов и их анализ

1. ВВЕДЕНИЕ

Несмотря на значительное количество публикаций, посвященных проблемам конденсации внутри труб, сегодня нет определенности в рекомендациях по расчетным зависимостям. Это связано в первую очередь с тем, что большинство зависимостей получены на основании обобщения экспериментальных результатов, содержат погрешности и применимы в узком диапазоне изменения параметров. Как следует из сравнительного анализа, проведенного в [3], расчетные рекомендации разных авторов могут отличаться в три и более раз. Причем, известные результаты исследований, как правило, относятся к области развитого турбулентного течения как пара, так и пленки жидкости на стенке трубы. Для области ламинарного течения расчетные зависимости вообще практически отсутствуют.

Для практических расчетов наиболее распространенными зависимостями являются формула Ананьева, Бойко и Кружилина [1] и формула Шаха [2]. Эти формулы для некоторых практически важных случаев неприменимы, поскольку на значительной части длины конденсатора течение жидкости либо пара может быть ламинарным (особенно в начале и в конце участка конденсации). В [4] предложена модель, позволяющая для заданных условий определять значение коэффициента теплоотдачи путем численного решения системы уравнений. Однако эта модель справедлива только для случая ламинарного течения пленки жидкости. В настоящей работе представлена модель, позволяющая рассчитывать теплоотдачу при любом сочетании режимов течения пара и пленки жидкости на стенках трубы.

2. ЛОКАЛЬНАЯ ТЕПЛООТДАЧА ПРИ КОЛЬЦЕВОМ ТЕЧЕНИИ ПЛЕНКИ ЖИДКОСТИ В ТРУБЕ

В основу модели положены следующие основные допущения: на границе раздела пара и пленки жидкости соблюдается равенство скоростей u и касательных напряжений τ в паре и в жидкости, течение пара и жидкости в любом сечении является установившимся, деформация профилей скорости вследствие поперечного потока массы при конденсации пара пренебрежима, перенос тепла через пленку конденсата осуществляется теплопроводностью, влияние конвекции на теплоперенос пренебрежимо.

В общем случае касательные напряжения на границе раздела со стороны жидкости и пара определяются уравнениями:

$$\left(\tau_{0}\right)_{l} = -\frac{\mathrm{d}p}{\mathrm{d}x} \cdot \frac{d-2\delta}{4}; \qquad (1)$$

$$(\tau_0)_v = \xi \frac{\rho_v (\overline{u''} - u_0)^2}{8},$$
 (2)

где коэффициент сопротивления ξ при движении пара в канале диаметром $d-2\delta$ со средней скоростью $\overline{u_v} - u_0$ определяется по традиционным зависимостям для ламинарного либо турбулентного течения, $\overline{u_v} = \frac{4G_v}{\rho_v \pi (d-2\delta)^2}$.

В настоящей работе рассмотрена модель, позволяющая с единых позиций рассчитывать весь диапазон возможных режимов течения жидкости и пара, включая турбулентное течение пленки жидкости. Для этого при турбулентном движении, используя универсальный логарифмический закон распределения скорости, получено:

при
$$5 < \frac{\rho_l u_* \delta}{\mu_l} < 30$$

 $u_0 = u_* \left[11.5 \lg \left(\frac{\rho_l u_* \delta}{5 \mu_l} \right) + 5 \right],$ (3)

$$\left(\frac{\mathrm{d}u_l}{\mathrm{d}y}\right)_0 = \frac{26.5u_*}{\delta}; \qquad (4)$$

при
$$\frac{\rho_l u_* \delta}{\mu_l} > 30$$

$$u_0 = u_* \left[5.75 \lg \left(\frac{\rho_l u_* \delta}{\mu_l} \right) + 5.5 \right], \qquad (5)$$

$$\left(\frac{\mathrm{d}u_l}{\mu_l} \right) = \frac{13.24 u_*}{2}, \qquad (6)$$

где $u_* = \sqrt{\frac{\tau_w}{\rho}}$, $\tau_w = \frac{d}{4} \cdot \frac{dp}{dz}$.

При ламинарном течении жидкости в пленке из закона Хагена-Пуазейля и уравнения сплошности можно получить уравнения, описывающие изменение скорости и поперечного градиента скорости на границе раздела пара и жидкости:

$$\left(u_{l}\right)_{0} = -\frac{\delta(d-\delta)}{4\mu_{l}}\frac{\mathrm{d}p}{\mathrm{d}z},\qquad(7)$$

$$\left(\frac{\mathrm{d}u_l}{\mathrm{d}y}\right)_0 = -\frac{\delta}{2\mu_l}\frac{\mathrm{d}p}{\mathrm{d}z},\tag{8}$$

а также уравнение для расхода жидкости в пленке конденсата:

$$G_l = -\frac{\pi \delta^2 \rho_l \left(d - \delta\right)^2}{8\mu_l} \frac{\mathrm{d}p}{\mathrm{d}z}.$$
 (9)

Из условия равенства касательных напряжений на границе раздела с учетом (1) и (2) при заданном расходе жидкости и пара можно определить значения толщины пленки δ, коэффициента теплоотдачи

$$\alpha = \frac{2\lambda_{l}}{d \ln \left[d/(d-2\delta) \right]}$$
 и числа Нуссельта Nu = $\alpha d/\lambda_{l}$.

Примеры результатов совместного решения уравнений (1) – (9) представлены на рис. 1 (линия 10). Как видно, при не очень больших паросодержаниях результаты модели располагаются несколько ниже, чем основная масса результатов. Причина этого, во-первых, в том, что модель учитывает возможность ламинарного течения, что не учитывают расчетные зависимости других авторов. Во-вторых, модель не учитывает влияние силы тяжести, которая в случае малого паросодержания, а значит, большой толщины пленки жидкости, может приводить к стеканию и утонышению пленки жидкости, а значит, повышению теплоотдачи.

На рис. 1 представлены результаты расчетов в виде зависимости комплекса $K = \text{Nu}/\{\Pr^{0.43}[1 + x(\rho_1/\rho_v - 1)]^{0.5}\}$ от числа Рейнольдса $\text{Re}_{\mu} = 4(G_l + G_v)/(\pi d\mu_1)$. Как видно, при $\text{Re}_{\mu} < 1000$ наблюдается существенное отличие результатов расчетов от зависимости Бойко и Кружилина (уравнение(1)), что вызвано ламинарным течением и не применимостью в этом случае уравнения (1). Кроме того, наблюдается расслоение по паросодержанию $x = G_v/(G_l + G_v)$. При больших числах Рейнольдса наблюдается хорошее согласование результатов представленной модели и уравнения (1).

Рис. 1. Зависимости от числа Рейнольдса комплекса, характеризующего локальную теплоотдачу $K = \text{Nu} / \left\{ \text{Pr}^{0.43} \left[1 + x(\rho_1 / \rho_v - 1) \right]^{0.5} \right\}$ при различных значениях паросодержания *x*: 1 – 0.999; 2 – 0.99; 3 – 0.9; 4 – 0.5; 5 – 0.1. Линия 6 – расчет по [1]

3. ПОЛНАЯ КОНДЕНСАЦИЯ ПАРА В ТРУБЕ ПРИ ПРЕНЕБРЕЖИМОЙ РОЛИ СИЛ ТЯЖЕСТИ

При конденсации пара, движущегося в трубе, расход как пара, так и жидкости по длине трубы непрерывно изменяются. Если в каждом сечении рассчитывать локальную теплоотдачу и считать изменение расхода пара и жидкости по уравнению материального баланса, то после осреднения по всей длине участка конденсации можно определить средний коэффициент теплоотдачи. Для этого рассмотрим уравнения материального баланса парового потока и пленки жидкости в следующей форме:

$$r\frac{dG_{v}}{dz} = -\frac{\pi(t_{s}-t_{\infty})}{\frac{1}{2\lambda_{q}}\ln\left(\frac{d}{d-2\delta}\right) + \frac{1}{2\lambda_{w}}\ln\left(1 + \frac{2\delta_{w}}{d}\right) + \frac{1}{\alpha_{\infty}(d+2\delta_{w})}},(10)$$
$$\frac{dG_{l}}{dz} = -\frac{dG_{v}}{dz}.$$
(11)

Численно решая уравнения (10) и (11) от входного сечения, в котором G_l=0, до сечения, в котором значение расхода пара достигает нуля, при этом в каждом сечении вычисляя δ и α по модели, описанной в разд. 2 настоящей статьи, можно получить распределение основных характеристик вдоль канала. Ha рис. 2 представлены расчетные результаты изменения локального коэффициента теплоотдачи при конденсации паров аммиака в трубке внутренним диаметром 6 мм при общем тепловом потоке 400 Вт. Как видно, наблюдается существенное различие результатов расчетов по разным моделям. Это различие определяется разным изменением толщины пленки δ вдоль участка конденсации (рис. 2). Изменение средней скорости жидкости в пленке вдоль трубы определяется двумя факторами - изменением расхода вследствие конденсации и изменением толщины пленки жидкости. Это определяет немонотонное изменение скорости жидкости, как это видно из рис. 2. Турбулентное течение пара и жидкости наблюдается лишь на коротком участке в средней части участка конденсации, как это следует из нижнего графика на рис. 2. Во всей остальной области, строго говоря, расчетные зависимости [1], [2], и практически все другие, не применимы. Это и определяет существенное отличие значений среднего коэффициента теплоотдачи при малых тепловых нагрузках (рис. 3). Расчетные зависимости [1] и [2], полученные экспериментально в области развитого турбулентного течения, здесь дают нереально низкие значения.

Результаты расчета потерь давления, пример которых представлен на рис. 3, также показывают, что в области малых тепловых нагрузок традиционно применяемая модель гомогенного теплоносителя дает неоправданно низкие результаты.

Рис.2. Изменение вдоль трубы локального коэффициента теплоотдачи α , толщины пленки конденсата δ (1 - [2], 2 - [1], 3 – предложенная модель), скорости жидкости (4), пара (5) и границы раздела вдоль трубы (6), числа Рейнольдса жидкости Re_l (7) и пара Re_v . (8); ЛЖ – зона ламинарного течения жидкости, ЛП – зона ламинарного течения пара

Рис. 3. Зависимости среднего на участке конденсации коэффициента теплоотдачи и потерь давления от тепловой нагрузки конденсатора: 1, 4 – предложенная модель; 2 - [2]; 3 - [1]; 5 – модель гомогенного теплоносителя

4. ПОЛНАЯ КОНДЕНСАЦИЯ ПАРА В ГОРИЗОНТАЛЬНОЙ ТРУБЕ С УЧЕТОМ СИЛ ТЯЖЕСТИ

На входе в конденсатор скорость пара обычно велика, основным механизмом отвода жидкости с поверхности конденсации здесь является динамическое воздействие пара на пленку жидкости, а влияние сил тяжести пренебрежимо. Вдоль конденсатора скорость пара уменьшается, роль сил тяжести увеличивается и в конце участка конденсации становится основной, где скорость пара падает до нуля. Условно разобьем конденсатор на два участка: 1 прилегающий ко входу участок с пренебрежимым влиянием сил тяжести, 2 – участок с пренебрежимой скоростью пара, где жидкость стекает по стенкам трубы под действием сил тяжести. В сечении сопряжения этих участков примем допущение о равенстве динамического напора $\rho_{y}u_{y}^{2}/2$ и гидростатического напора $\rho_l g d$. Тогда расход пара в этом сечении равен:

$$G = \frac{\pi d^2}{4} \sqrt{2\rho_l \rho_v g d} . \tag{12}$$

Решая численно уравнения (10) и (11) от входного сечения до сечения, в котором значение расхода пара $G = G_2$, можно определить средний коэффициент теплоотдачи на первом участке α_1 и длину этого участка l_1 . Далее в соответствии с рекомендациями [5] определяем значение коэффициента теплоотдачи при конденсации в горизонтальной трубе неподвижного пара α_2 и длину второй зоны конденсации:

$$l_2 = \frac{G_v r}{\alpha_2 \pi d\Delta t}.$$
 (13)

Средний коэффициент теплоотдачи на всем участке конденсации равен:

$$\overline{\alpha} = \frac{\alpha_1 l_1 + \alpha_2 l_2}{l_1 + l_2} \,. \tag{14}$$

Результаты расчетов конденсации аммиака в трубе диаметром 10 мм по моделям, описанным в разд. 3 и 4, а также некоторые литературные данные, представлены на рис. 4.

Как видно из графика, расчетная кривая для случая конденсации с учетом сил тяжести (линия 6) имеет две асимптоты. Правая асимптота соответствует пренебрежимому влиянию сил тяжести (линия 5). Расчетная кривая 6 практически совпадает с ней при плотностях теплового потока q более 20 кВт/м². Левая асимптота соответствует условиям, когда конденсация определяется только силами тяжести (линия 1). Расчетная кривая 6 практически совпадает с ней при q < 2 кВт/м².

Рис. 4. Зависимости коэффициента теплоотдачи от плотности теплового потока по данным различных авторов: *I* – Л.Чейто[5]; *2* – Ю.Н.Ширяев [6]; *3* – С.А.Городинская [7]; *4* – Л.Д.Бойко и Г.Н. Кружилин [1], *5* и *6* – расчет по предложенной модели (5 – без учета сил тяжести, *6* – с учетом сил тяжести), *7* и *8* – экспериментальные данные Н.И. Гоголя [8] (7 – 1/d = 75, 8 – 1/d = 254)

Результаты расчетов хорошо согласуются с результатами экспериментов при $q > 5 \text{ кBt/m}^2$. При более низких значениях q расчет дает завышенные значения теплоотдачи, что может быть связано, вопервых, с не учитываемым в расчетах затоплением нижней части трубы, во-вторых, с влиянием сил поверхностного натяжения.

ЗАКЛЮЧЕНИЕ

Предложенная методика расчета конденсации пара в трубе применима при любом сочетании режимов течения жидкости и пара. Методика дает физически обоснованные результаты как для случая микрогравитации, так и для случая существенного влияния сил тяжести. Результаты расчетов хорошо согласуются с результатами экспериментов. При малых тепловых потоках методика дает завышенные значения коэффициента теплоотдачи, что связано с не учетом затопления нижней части трубы.

СПИСОК ОБОЗНАЧЕНИЙ

- *d* диаметр трубы, м;
- *G* массовый расход, кг/с;
- *p* давление, Па;
- *Q* тепловой поток, Вт;
- r удельная теплота парообразования; Дж/кг;
- t температура, °C;
- u скорость, м/с;
- *x* массовое расходное паросодержание;
- *z* продольная координата, м;

- α коэффициент теплоотдачи, Bt/(м²·K);
- δ толщина пленки жидкости, м;
- λ теплопроводность, Bt/(м²·K);
- μ динамическая вязкость, Па·с;
- ρ плотность, кг/м³;
- т касательное напряжение, Па.

Индексы:

- с критический;
- l жидкость;
- ос окружающая среда;
- s насыщение;
- *v* пар;
- *w* стенка;
- 0 граница раздела пара и жидкости;
- 1 зона конденсации с несущественным влиянием сил тяжести,
- 2 зона конденсации с определяющим влиянием сил тяжести.

СПИСОК ЛИТЕРАТУРЫ

- Ananiev E.P., Boyko L.D., Kruzhilin G.N. Heat transfer in the presence of steam condensation in a horizontal tube // Intern. Developments in Heat Transfer. 1961. pt II. P. 290.
- Shah M.M. A General Correlation for Heat Transfer During Film Condensation Inside Pipes // Intern. J. Heat and and Mass Transfer. Vol. 22. 1979. P. 127–137.
- Mishkinis D. and Ochterbeck J.M. Analysis of Tubeside Condensation in Microgravity and Earth-Normal Gravity // Heat Pipe, Heat Pump, Refrigerations: 5th Minsk Intern. Seminar. Minsk, Belarus, 2003. P. 36–53.
- 4. Буз В.Н., Гончаров К.А. Гидродинамика и теплообмен при полной конденсации пара в каналах малых размеров // Физические основы экспериментального и математического моделирования процессов газодинамики и теплообмена в энергетических установках: XIII Школа-семинар под рук. акад. РАН А.И.Леонтьева, С-Петербург, май, 2001.Т.1. С. 381—384.
- Chato L.C. Laminar condensation inside horizontal and inclined tubes//ASHRAE. 1962. Vol. 4. No 1. P. 52—60.
- Ширяев Ю. И. Исследование теплоотдачи при конденсации холодильных агентов внутри горизонтальных труб: Автореф. дис.... канд. техн. наук. Л.: Ленингр. технолог. ин-т. холод.пром. Л., 1974. 24 с.
- Чернобыльский Н. И., Городинская С. А. Исследование ние теплообмена при конденсации пара внутри горизонтальных труб // Известия Киевского политехнического института. 1964. Т. 13. С. 158—170.
- 8. Гоголь Н.И., Лагутин А.Е., Чепурненко В.П. Исследование процессов конденсации аммиака внутри труб // Холодильна техніка і технологія. 2004. № 6 (92). С. 7—14.