Э.Э. Шпильрайн 2 , С.И. Вайнштейн 3 , А.П.Севастьянов 1 , Ю.А. Севастьянов 1

Московский энергетический институт (технический университет), Россия (1) Институт высоких температур РАН, Москва, Россия (2) Московский государственный университет инженерной экологии, Россия (3)

ОСОБЕННОСТИ РАБОТЫ СВЕРХЗВУКОВОГО ДВУХФАЗНОГО ДИФФУЗОРА КОНДЕНСИРУЮЩЕГО ИНЖЕКТОРА

АННОТАШИЯ

Процессы в камере смешения (КС) конденсирующего инжектора (КИ) завершаются переходом к сверхзвуковому потоку пенной или пузырьковой структуры. При наличии противодавления (достаточной интенсивности) пузырьковое течение скачком преобразуется в однофазное жилкое течение.

Повышение давления в двухфазном потоке большой влажности при течении в диффузоре происходит в два этапа: 1) в скачке; 2) при торможении несжимаемой жидкости в расширяющемся канале. Поэтому возникает вопрос о наиболее выгодном сочетании этих двух этапов, при котором обеспечивается максимально возможное повышение давления в диффузоре.

В работе проанализирована модель течения в двухфазном диффузоре, построенная на экспериментально обоснованных допущениях, проведена оценка влияния на выходное противодавление объёмного влагосодержания и представлена формула, определяющая оптимальное влагосодержание, соответствующее максимальному противодавлению

1. ВВЕДЕНИЕ

Измерения скорости жидкой фазы в конце камеры смешения и диффузоре, проведённые авторами, показывают, что скорость потока в двухфазной зоне (равная скорости жидкости из-за малого скольжения) на всех режимах больше равновесной (термодинамической) скорости звука a_l , но существенно меньше замороженной скорости звука $\,a_{f}\,.$ Следовательно, по отношению к a_l поток является сверхзвуковым и поэтому должны проявляться эффекты, характерные для сверхзвукового режима течения. В этих условиях при повышении давления $P_{\mathrm{д}}$ в диффузоре появляется полностью размытая ударная волна, перемещающаяся по мере увеличения $P_{\scriptscriptstyle \rm II}$ к горлу диффузора. Её интенсивность при этом увеличивается и возрастает число Маха М1, рассчитанное по значению равновесной скорости звука a_{I} . Вдоль камеры смешения, начиная с сечения структурного перехода, М₁ немонотонно возрастает, так что в горле диффузора имеется максимум М₁, связанный с устойчивостью положения скачка в горле диффузора [2]. Из опытов также следует, что при повышении значений $P_{\scriptscriptstyle
m I}$ давление в камере смешения не изменяется, т.е. течение в конце камеры смешения и диффузоре остаётся сверхзвуковым и по отношению к возмущениям, возникающим в диффузоре конденсирующего инжектора.

2. ОСОБЕННОСТИ РАБОТЫ СВЕРХЗВУКОВОГО ДВУХФАЗНОГО ДИФФУЗОРА

Опытные данные показывают, что при скоростях двухфазного потока большой влажности, превосходящих местную термодинамическую скорость звука, процесс восстановления в диффузоре существенным образом отличается от восстановления давления в однофазных потоках. Это различие связано с наличием зоны весьма больших положительных градиентов давления и плотности (далее эта зона называется просто скачком), в которой происходит конденсация паровой фазы.

Изменение давления за диффузором (противодавление) приводит к перемещению скачка в продольном направлении, не оказывая влияния на участок течения, расположенный перед скачком. При изобарической конденсации в КС КИ, что наблюдается в экспериментах при значениях $\bar{F}_{{}_{\Gamma}{}_{\Pi}} > 0,7$, максимальному значению противодавления, при котором ещё возможно установившееся течение, соответствует расположение скачка в устье (горловине) диффузора. При этом фронт скачка достаточно близок к прямому. В этом случае модель течения может быть представлена следующим образом: на входе в диффузор поток двухфазный, одномерный, равновесный термодинамически, течение установившееся, скольжение фаз отсутствует; в цилиндрической части (горле) диффузора расположен прямой скачок, в котором происходит полная конденсация пара. Протяжённость скачка полагается нулевой; при этом допускается, что потерями трения в зоне скачка можно пренебречь.

Восстановление давления определяется на основании законов сохранения количества движения и массы в следующем виде:

$$\begin{split} \Delta p &= p_{\pi} - p_{1} = \frac{1}{2} \rho_{\pi} [2C_{2}(C_{1} - C_{2}) + (C_{2}^{2} - C_{\partial}^{2}) \times \\ \times (1 - \xi_{\pi})] &= \rho_{\pi} [C_{2}C_{1} - 0.5C_{2}^{2}(2 - \eta_{\pi})], \end{split} \tag{1}$$

где $\eta_{\rm H}=1-\xi_{\rm H}=(p_{\rm H}-p_2)/(0,5\rho_{\rm W}C_2^2)$ – КПД диффузора; $\xi_{\rm H}$ – коэффициент диссипативных потерь в расходящейся части диффузора; C – скорость по-

тока; индексы «1», «2» и «д» относятся к сечениям перед скачком, за ним и на выходе из диффузора.

Величина $\xi_{\rm д}$ в общем случае зависит от формы диффузора и условий на входе в него. В первом приближении можно полагать, что для диффузора данной геометрии в каждом рассматриваемом случае величина $\xi_{\rm л}$ может быть задана.

Введя масштаб, который имеет физический смысл динамического напора в предельном случае полной конденсации паровой составляющей перед скачком, и преобразуя (1) к удобному для анализа виду, получаем

$$\begin{split} & \Delta \overline{\rho} = \Delta p / (0, 5\rho_{\mathcal{K}} C_1^2) = 2[\phi_{\mathcal{K}} (1 - \overline{\rho}) + \rho] + \\ & + (1 - \phi_{\mathcal{H}})(1 - \overline{\rho}) + (1 + \xi_{\pi})[\phi_{\mathcal{K}} (1 - \overline{\rho}) + \overline{\rho}]^2, \end{split} \tag{2}$$

где $\phi_{\rm ж}$ — доля сечения перед скачком, занятая жидкостью, которая при отсутствии скольжения численно совпадает с объемным влагосодержанием; $\overline{\rho} = \rho_{\rm \Pi} / \rho_{\rm ж}$.

Построенный таким образом безразмерный перепад давления $\Delta \overline{p}$, хотя численно и не совпадает с КПД двухфазного диффузора, все же является некоторой мерой эффективности процесса восстановления в системе скачок — диффузор.

Анализ (2) показывает, что в случае $\bar{\rho} = const$, соответствующем постоянству давления (температуры) двухфазного потока перед скачком, зависимость $\Delta \bar{p}(\phi)$ имеет максимум:

$$\varphi_{\mathcal{K} \ opt} = \left(1 - \frac{\overline{\rho}}{1 + \overline{\rho}} \xi_{\mathcal{I}}\right) \left(1 + \xi_{\mathcal{I}}\right). \tag{3}$$

При этом в области низких давлений, характерных для органических рабочих тел (OPT), $\bar{\rho}$ <<1. Это позволяет при $\phi_{\rm ж} >> \bar{\rho}$ упростить выражения (2) и (3):

$$\Delta \overline{p} = 2\varphi_{\mathcal{K}} - (1 + \xi_{\Pi})\varphi_{\mathcal{K}}^2; \tag{4}$$

$$\varphi_{\mathbf{x} \ opt} = 1/\left(1 + \xi_{\mathbf{I}}\right). \tag{5}$$

Графическое изображение зависимости (4) представлено на рис.1. На линии $\xi_{\pi} = 1$ давление на выходе из диффузора равно давлению непосредственно за скачком вследствие того, что все количество движения за скачком затрачивается на преодоление потерь в диффузоре $\Delta p = \Delta p_{\rm ck}$. Следовательно, эта кривая одновременно отображает восстановление давления собственно в скачке (для всех значений ξ_{π}). С увеличением объемного влагосодержания сжимаемость потока уменьшается, что влечет за собой уменьшение потерь в скачке, заканчивающееся полной конденсацией, но при этом одновременно уменьшается используемая для повышения давления в скачке разность количества движения $C_1/C_2 = 1/\phi$. Наличием двух действующих в противоположных направлениях эффектов объясняется существование максимума $\Delta \overline{p}$ по $\phi_{\mathsf{ж}}$.

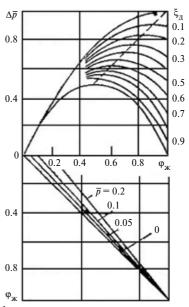


Рис. 1. Графики относительного восстановления давления в двухфазном диффузоре

При $\xi_{\rm J}=1$ максимальное восстановление давления имеет место при $\phi_{\rm K}=0,5$, а после подстановки $\phi_{\rm K}$ $_{opt}=0,5$ в (2) находим $\Delta \overline{p}_{\rm max}=0,25 \rho_{\rm K} C_1^2$.

При
$$\xi_{\rm L} = 0$$
 $\left(\phi_{\rm K} \; opt \right)_{\xi_{\rm L}} = 0 = 1$. Это значит, что

для достижения наибольшей эффективности двухфазного диффузора, при условии $\xi_{\rm д}=0$ все восстановление давления следовало бы проводить в диффузоре без скачка (что осуществимо для потока, объемное паросодержание которого практически равно нулю).

Из (2) видно, что влияние $\xi_{\rm д}$, если его рассматривать как независимый параметр, является линейным и проявляется почти прямо пропорционально величине $\phi_{\rm w}^2$:

$$\partial \Delta \overline{\rho} \, / \, \partial \xi_{\mathrm{J}} = - \Big\lceil \, \phi_{_{\! \! M}} \, \Big(1 - \overline{\rho} \Big) + \overline{\rho} \, \Big\rceil^2 \, .$$

Очевидно, что $\Delta \overline{p}$ совершенно одинаковым образом зависит от $\phi_{\mathbb{R}}$ (при условии, что $\phi_{\mathbb{R}} >> \overline{\rho}$) и от $\overline{C} = C_2/C_1$ (независимо от характера изменения $\overline{\rho}$ и $\phi_{\mathbb{R}}$). Поэтому кривые $\Delta \overline{p}(\phi_{\mathbb{R}})$ при $\xi_{\mathbb{R}}$ как параметре на рис.1 тождественно совпадают с кривыми $\Delta \overline{p}(C)$ при $\xi_{\mathbb{R}}$ как параметре. Для удобства представления в таком виде в нижней половине рис.1 построена зависимость $\phi_{\mathbb{R}}(\overline{C})$ (при $\overline{\rho}$ как параметре), представляющая собой семейство прямых, проходящих через точку $\overline{C}=1$, $\phi_{\mathbb{R}}=1$ и точки $\overline{C}=\overline{\rho}$ при $\phi_{\mathbb{R}}=0$. Поэтому можно, установив значение \overline{C} , затем определять ϕ (по заданному $\overline{\rho}$ или наоборот). Рассмотрение семейства прямых $\phi(\overline{C})$ еще раз подтверждает, что при $\Delta \overline{p}(C)$ $\overline{\rho} << \phi_{\mathbb{R}}$, $\phi_{\mathbb{R}} \approx \overline{C}$ и ось абсцисс можно рассматри-

вать как ось \overline{C} и $\phi_{\rm ж}$ одновременно. При таком представлении зависимости (1) безразмерное восстановление давления является функцией только двух аргументов, один из которых определяет интенсивность скачка, а другой — диссипативные потери в дозвуковом потоке за скачком, т.е. достигается предельная простота связей.

ЗАКЛЮЧЕНИЕ

При повышении давления в КИ в два этапа, при принятых допущениях и изобарической КС получена формула, определяющая оптимальное влагосодержание, соответствующее максимальному противодавлению. Уменьшение проходного сечения горла диффузора ведет к неизобаричности КС, появлению больших градиентов давления в конце КС (в сверхзвуковом потоке), что создает условия для неизбежного возникновения скачков уплотнения. Перемещение начала скачка в КС, увеличение его глубины вызывают заметное повышение потерь в скачке и в КС, которое ослабляет заметным образом выигрыш в эффективности, ожидаемой от уменьшения $\overline{F}_{\Gamma \Pi}$. Расположение скачка в зоне площади

КС, большей, чем площадь горловины диффузора, соответствует значению ϕ_{x} , отличному от $\phi_{x \; opt}$.

СПИСОК ОБОЗНАЧЕНИЙ

p – давление, H/M^2 ;

C – скорость, м/с;

 ρ – плотность, кг/м³;

ф - объемное соотношение;

 ξ – коэффициент диссипативных потерь;

η - коэффициент полезного действия;

 Δ – разность.

Индексы:

 π , ж – π ар, жидкость;

1 – состояние до скачка;

2 – состояние после скачка;

д – диффузор.

СПИСОК ЛИТЕРАТУРЫ

Анализ эффективности работы однокомпонентного конденсационного инжектора с малым горлом диффузора / Э.Э. Шпильрайн, И.В. Ан, С.И. Вайнштейн, А.П. Севастьянов и др. // Теплоэнергетика. 1976. № 5. С. 62–70.