А.Р. Аветисян

ФГУП Всероссийский научно-исследовательский и проектно конструкторский институт атомного энергетического машиностроения, Москва, Россия

МЕТОДЫ МОДЕЛИРОВАНИЯ ПОЛИДИСПЕРСНЫХ ТРАНСЗВУКОВЫХ ТУРБУЛЕНТНЫХ ТЕЧЕНИЙ С ФАЗОВЫМИ ПЕРЕХОДАМИ

АННОТАЦИЯ

Целью настоящей работы является представление методов для моделирования эволюции распределения капель по размерам в результате совместно протекающих процессов нуклеации (спонтанной конденсации), гетерогенной конденсации/испарения и коагуляции. Приводятся результаты расчетов по представленным моделям с сопоставлением с экспериментальными данными.

1. ВВЕДЕНИЕ

Двухфазные полидисперсные паро-капельные течения встречаются во многих природных и промышленных условиях, в частности, в паровых турбинах ТЭС и АЭС и др. Ключевым моментом в моделировании таких течений является расчет распределения капель по размерам вследствие фазовых переходов, коагуляции, дробления и других процессов с учетом турбулентности. Турбулентность не только оказывает существенное влияние на процессы трения и теплообмена в пограничных слоях вблизи стенок (в частности, на возможный отрыв потока), но может также играть значительную роль в формировании скачка спонтанной конденсации при трансзвуковом течении переохлажденного пара в соплах, турбинных решетках и др.

Эволюция спектра капель во времени и в пространстве описывается кинетическим уравнением для функции плотности вероятности (ФПВ) распределения по размерам (массам). Непосредственное решение кинетического уравнения в фазовом пространстве, по-видимому, имеет смысл только для относительно простых модельных задач с целью апробации приближенных методов, разрабатываемых для расчета гидродинамически сложных течений. В настоящей работе для моделирования эволюции спектра капель по размерам привлекаются три разных метода. Все три метода описания полидисперсности (распределения капель по размерам) органично сочетаются с эйлеровым континуальным моделированием движения и тепломассопереноса двухфазной среды. Первый метод (метод моментов) основан на использовании уравнений для моментов ФПВ [1,2]. Этот метод требует относительно небольших вычислительных затрат, поскольку вовлекает в расчеты только уравнения для нескольких первых моментов (в данной статье привлекаются уравнения для четырех моментов). В то же время область применения первого метода ограничена случаем очень мелких капель, скорости и температуры которых незначительно отличаются от соответствующих характеристик газовой фазы.

Второй подход к описанию полидисперсных течений (метод фракций) [3] основан на разделении спектра капель на ряд фракций с фиксированными границами и предположении о возможности обмена каплями между разными фракциями в результате фазовых переходов, коагуляции, фрагментации и т.д. В рамках этого метода ФПВ аппроксимируется кусочно-равновероятным распределением, и таким образом задача описания спектра капель сводится к решению уравнений для массовых концентраций отдельных фракций. Метод фракций является существенно более универсальным по сравнению с методом моментов, т.к. может использоваться для построения многоскоростного и многотемпературного континуального описания полидисперсной среды. Однако в случае моделирования течений со спонтанной конденсацией или при существенной роли коагуляции необходимо введение очень большого числа фракций для корректного моделирования формирования и роста капель. Поэтому для таких течений метод фракций становится слишком громоздким, поскольку требует оперирования с несколькими десятками (а то и сотнями) фракций. По существу аналогичные выводы делаются в [5] по отношению к лагранжеву методу групп (фракций) применительно к расчету течений влажного пара со спонтанной конденсацией, а также в [6,7] по отношению к сеточному методу (который является идентичным с методом фракций) применительно к расчету коагулирующих систем при больших промежутках времени. В работе [17] был предложен новый метод моделирования эволюции спектра капель, базирующийся на аппроксимации непрерывного распределения в виде суммы δ -функций (метод δ-аппроксимации). Следует отметить, что обычно аппроксимация непрерывного спектра δфункциями, т.е. представление полидисперсной системы капель в виде суммы монодисперсных групп, используется в рамках лагранжева подхода, когда уравнения движения и тепломассопереноса для дисперсной фазы интегрируются вдоль отдельных траекторий частиц. Представленные здесь методы описания эволюции спектра капель по размерам приспособлены к эйлерову континуальному подходу к моделированию двухфазных течений и легко могут быть имплантированы в промышленные и коммерческие комплексы программ (так называемые CFD коды).

В настоящей работе предлагается подход к моделированию двухфазных (парокапельных) течений, основанный на комбинации всех трех вышеописанных методов. Причем метод моментов используется для описания капель, образующихся в результате спонтанной конденсации, метод фракций – для моделирования начальной влаги, и метод δаппроксимации – для моделирования начальной влаги с учетом коагуляции капель.

2. ОСНОВНЫЕ УРАВНЕНИЯ

В настоящей работе рассматривается односкоростная однотемпературная модель двухфазной среды. В этом случае уравнения сохранения массы, импульса, полной энергии и энергии турбулентности и ее диссипации могут быть записаны в виде

$$W_{t} + F_{1}(W)_{x} + F_{2}(W)_{y} + F_{3}(W)_{z} =$$

$$= Q_{1}(W)_{x} + Q_{2}(W)_{y} + Q_{3}(W)_{z} +$$

$$+ R_{1}(W)_{x} + R_{2}(W)_{y} + R_{3}(W)_{z} +$$

$$+ \Omega(W) + J(W),$$
(1)

где $W = (\rho, \rho u, \rho v, \rho w, E, \rho k, \varepsilon, \rho Z, \rho L, \rho N, \rho M)^T$.

Здесь Z, L, N, M – переменные, описывающие дисперсную фазу. Величины $F_1(W)$, $F_2(W)$ и $F_3(W)$ в (1) – эйлеровые потоки, $Q_1(W)$, $Q_2(W)$ и $Q_3(W)$ – ламинарные вязкие потоки. Слагаемые $R_1(W)$, $R_2(W)$ и $R_3(W)$ в (1) описывают турбулентные вязкие потоки. Величина $\Omega(W)$ в уравнении (1) описывает источниковый член параметров турбулентности k и ε , J(W) – член, описывающий правые части уравнений, описывающих фазовые переходы и эволюцию спектра капель,

$$J(W) = (0, 0, 0, 0, 0, 0, 0, J_F, J_M, J_\delta)^I , \qquad (2)$$

где величины J_F соответствуют методу фракций, J_M – методу моментов, J_{δ} – методу δ -аппроксимации.

2.1. Метод фракций

Метод фракций основан на разбиении спектра капель на фракции с фиксированными границами и предположении одинакового поведения капель внутри данной фракции [3]. Таким образом, если даны границы фракций r_n (n = 0, ..., N), то имеется N фракций $\left[r_{n-1/2}, r_{n+1/2}, \right]$, где n = 1/2, 3/2, ..., N - 1/2, тогда в (2)

$$\begin{split} J_{Fn} &= \frac{\dot{m}_n Z_n}{\bar{m}_n} + m_{n-1/2} \dot{m}_{n-1} \times \begin{cases} P_{m,n-1}, & \dot{m} > 0 \\ P_{m,n}, & \dot{m} < 0 \end{cases} \\ -m_{n+1/2} \dot{m} \times \begin{cases} P_{m,n}, & \dot{m} > 0, \\ P_{m,n+1}, & \dot{m} < 0, \end{cases} \\ \\ P_{m,n} \left(m_{n-1} < m \le m_n \right) = \frac{2Z_n}{m_n^2 - m_{n-1}^2}, \end{split}$$

$$Z_n = \int_{m_{n-1}}^{m_n} m P_m dm , \qquad (3)$$

$$n = 1/2, ..., N - 1/2 .$$

2.2. Метод моментов

Вывод уравнений для моментов ФПВ можно найти в [2]. В этом случае в (2) имеем

$$J_{Mk} = Im_*^k + k\dot{m}L_{k-1}, \ k = 0, 1, 2, 3, \ L_{-1} = 0.$$
 (4)

2.3. Метод моментов δ-аппроксимации

В рамках метода δ-аппроксимации полидисперсный ансамбль капель моделируется системой монодисперсных групп, для чего непрерывная ФПВ аппроксимируется в виде суммы δ-функций:

$$P_m = \sum_{\alpha=1}^{A} N_{\alpha} \delta(m - \overline{m}_{\alpha}), \qquad (5)$$

где N_{α} – числовая концентрация капель α -группы (число капель в единице объема); \overline{m}_{α} – средняя масса капель α -группы, определяемая как

$$\overline{m}_{\alpha} = \frac{M_{\alpha}}{N_{\alpha}},\tag{6}$$

где M_{α} – масса капель α -группы.

Для нахождения N_{α} и M_{α} в [16] получены уравнения:

$$\frac{\partial N_{\alpha}}{\partial \tau} + \frac{\partial W_i N_{\alpha}}{\partial x_i} = I \delta_{1\alpha} - \frac{N_{\alpha}}{2} \sum_{\alpha_1 = 1}^{A} \beta(\overline{m}_{\alpha}, \overline{m}_{\alpha_1}) N_{\alpha_1};$$

$$\frac{\partial M_{\alpha}}{\partial \tau} + \frac{\partial W_i M_{\alpha}}{\partial x_i} = I \overline{m}_1 \delta_{1\alpha} + J(\overline{m}_{\alpha}) N_{\alpha}.$$
(7)

Тогда в (2) можно записать

$$J_{\delta\alpha} = \begin{pmatrix} I\delta_{1\alpha} - \frac{N_{\alpha}}{2} \sum_{\alpha_{1}=1}^{A} \beta(\overline{m}_{\alpha}, \overline{m}_{\alpha_{1}}) N_{\alpha_{1}}, \\ I\overline{m}_{1}\delta_{1\alpha} + J(\overline{m}_{\alpha}) N_{\alpha}. \end{pmatrix}$$

Число и масса всех капель в единице объема согласно (5) и (6) определяются соотношениями:

$$N = \sum_{\alpha=1}^{A} N_{\alpha} , \quad M = \sum_{\alpha=1}^{A} M_{\alpha} .$$
 (8)

Как видно из (8), имеет место расщепление решения по физическим процессам вследствие того, что при гетерогенных фазовых переходах сохраняется число частиц, а при коагуляции – их масса. Таким образом, задача моделирования эволюции спектра полидисперсного ансамбля частиц сводится к решению системы уравнений для числовых и массовых концентраций, взаимодействующих благодаря коагуляции групп монодисперсных частиц. Начальные условия для уравнений (8) могут быть получены из требования, чтобы аппроксимация (6) обеспечила точные значения нескольких моментов заданной начальной ФПВ.

3. МОДЕЛЬ ТУРБУЛЕНТНОСТИ

В рамках стандартной высоко-рейнольдсовой *k* – є модели турбулентности (СТВ) коэффициент турбулентной вязкости определяется соотношением [8]

$$\mathsf{v}_T = c_\mu \frac{k^2}{\varepsilon} \,. \tag{9}$$

Однако известно, что для ряда неравновесных течений, например при наличии больших градиентов скоростей в сдвиговых и конфузорно-диффузорных потоках, стандартная k-є модель приводит к неудовлетворительным результатам, в частности, предсказывая ненормально высокий уровень турбулентности вследствие большой погрешности в описании производства турбулентной энергии. Так, применительно к сопловым течениям стандартная *k*-*ε* модель может давать нефизически высокие значения турбулентной энергии (степени турбулентности) в приосевой зоне [17, 18]. Существенно лучшие результаты для таких течений могут быть получены путем простейшей модификации $k-\varepsilon$ модели (МТВ), модифицируя выражение для турбулентной вязкости (9). Предлагаемая модификация основывается на подходе, предложенном Speziale [9,10] для представления тензора анизотропии в виде разложения в ряд Тейлора относительно градиента средней скорости. Первый член разложения дает следующее выражение для коэффициента вязкости:

$$v_T = \frac{c_\mu}{1 + (\Pi/\varepsilon - 1)/c_1} \frac{k^2}{\varepsilon} \,. \tag{10}$$

Соотношение (10) представлено в виде, предусматривающем его совпадение с (9) для равновесных течений ($\Pi = \varepsilon$). Минимально допустимое значение постоянной $c_1 = 1$.

4. ЧИСЛЕННЫЙ МЕТОД

Для численного решения уравнений (1) применялся метод, используемый в индустриальном коде N3S-MUSCL [15]. Этот метод основан на расщеплении (1) по физическим процессам:

- по газодинамическим

$$W_{t} + F_{1}(W)_{x} + F_{2}(W)_{y} + F_{3}(W)_{z} =$$

= $Q_{1}(W)_{x} + Q_{2}(W)_{y} + Q_{3}(W)_{z} + R_{1}(W)_{x} + (11)_{z} + R_{2}(W)_{y} + R_{3}(W)_{z} + \Omega(W);$

– по фазовым превращениям

$$W_t = J(W). \tag{12}$$

Для решения уравнения (11) применяется аппроксимация второго порядка по пространству на неструктурированных сетках. При этом эйлеровые потоки аппроксимируются по методу MUSCL (Monotonic Upwind Scheme for Conservative Lows) [13]. Для аппроксимации диффузионных членов в (11) используется метод конечных элементов. Для аппроксимации по времени используются как явная схема первого порядка, так и неявная второго порядка [14, 15].

Поскольку в уравнениях (12) отсутствуют производные по пространству, т.е. представляют собой систему обыкновенных дифференциальных уравнений, то они могут быть решены в каждом узле пространственной сетки независимо от остальных.

Для решения (12) применяется классический метод Рунге-Кутта четвертого порядка. Основная проблема использования явных методов заключается в том, что время релаксации процессов фазовых превращений может оказаться меньше шага интегрирования по времени Δt . В таком случае метод оказывается вычислительно неустойчивым. Для преодоления этой проблемы на каждом шаге интегрирования по времени проверяется знак величины $p - p_s$ при вычислении J(Y). Если знак меняется, то процедура Рунге-Кутта прекращается и определяется состояние равновесия как промежуточное значение между состоянием перегрева Y', когда $p - p_s > 0$, и состоянием переохлаждения Y'', когда $p - p_s < 0$. Таким образом, методом дихотомии находим s, где $0 \le s \le 1$, для которого состояние W = sY' + (1-s)Y''соответствует состоянию равновесия.

5. РЕЗУЛЬТАТЫ РАСЧЕТОВ

На рис. 1 показано распределение давления по длине сопла при отсутствии и при наличии начальной влаги для условий экспериментов [12]. В этих экспериментах полное давление было постоянным $p_0=3.16\cdot10^4$ Па, а полная температура T_0 варьировалась. Таким образом, рис. 1 демонстрирует влияние начального перегрева пара на процесс спонтанной конденсации, а также влияние мелкодисперсной начальной влаги на процесс спонтанной конденсации. При наличии 0.4% начальной влаги размером 0.08мкм процесс расширения происходит равновесно (кружки на рис. 1)

Рис. 1. Распределение давления вдоль оси сопла

ЗАКЛЮЧЕНИЕ

Представлен новый эйлеровый подход к моделированию двухфазных турбулентных течений с фазовыми переходами.

Стандартная $k - \varepsilon$ модель турбулентности непригодна для расчета течений со спонтанной конденсацией.

Предложена простая модификация турбулентной вязкости в рамках $k - \varepsilon$ модели, которая может быть успешно применена для моделирования рассматриваемых течений.

Предложенный подход позволяет адекватно описать сверхзвуковые течения со спонтанной конденсацией как при наличии, так и при отсутствии начальной дисперсной влаги на входе.

СПИСОК ОБОЗНАЧЕНИЙ

 $E = \rho e + \frac{1}{2}\rho (u^2 + v^2 + w^2) + \rho k$ – полная энергия;

I – скорость нуклеации по Френкелю-Зельдовичу [12]; k – кинетическая энергия турбулентности;

$$L_k = \int_0^\infty m^k P_m(m) dm - \text{моменты } \Phi \Pi \text{B};$$

*т** - критическая масса капли;

- *m* скорость роста капли, определяемая по соотношению Герца-Кнудсена [12];
- *и*, *v* и *w* декартовые компоненты скорости двухфазной среды;

 $\beta(m_1, m_2) -$ ядро коагуляции;

ρ – плотность двухфазной среды;

ε – диссипация энергия турбулентности.

СПИСОК ЛИТЕРАТУРЫ

- Hill P.G. Condensation of Water Vapour during Super-1. sonic Expansion in Nozzles // J. Fluid Mech. 1966. V. 25. N 3. P. 593.
- 2. Стернин Л.Е. Основы газодинамики двухфазных течений в соплах. М.: Машиностроение, 1974.
- 3. Avetissian A.R., Boldarev A.S., Philippov G.A., Zaichik L.I. On application of Eulerian fractions method for modelling two-phase flows with phase transitions // Proc. of the Second International Symposium on Two-Phase Flow Modelling and Experimentation, eds.

G.P. Celata, P. Di Marco & R.K. Shah, Edizioni ETS: Pisa, (3). 1999. P. 1601-1606.

- 4 Зайчик Л.И., Лебедев А.Б., Савельев А.М., Старик А.М. Моделирование бинарной конденсации H₂O/H₂SO₄ в струях реактивных двигателей на основе эйлерова метода фракций // ТВТ. 2000. Т. 38. № 1. C. 81.
- 5. White A.J., Hounslow H.J. Modelling Droplet Size Distributions in Polydispersed Wet-Steam Flows // Int. J. Heat and Mass Transfer. 2000. V. 43. № 11. P .1873.
- 6. Пискунов В.Н., Голубев А.И. Метод определения динамических параметров коагулирующих систем // Доклады РАН. 1999. Т. 366. № 3. С. 341.
- Пискунов В.Н. Теоретические модели кинетики 7. формирования аэрозолей. Саров: РФЯЦ ВНИИЭФ, 2000.
- Launder B.E. & Spalding D.B. The numerical compu-8. tation of turbulent flows // Comp. Math. Appl. Mech. Eng. 1974. 3(1). P. 269-289.
- 9 Speziale C.G. On non linear and models of turbulence // J. Fluid Mech. 1987.V.178, P.459-475.
- 10. Gatski T.B., Speziale G.G. On explicit algebraic stress models for complex turbulent flows // J. Fluid Mech. 1993.V.254.P.59-78.
- 11. Skillings S.A., Walters P.T., Moore M.J. A study of supercritical heat addition as potential loss mechanism in condensing steam turbines IMechE. 1987. C259/87. P. 125-134.
- 12. Дейч М.Е., Филиппов Г.А. Газодинамика двухфазных сред. М.: Энергоатомиздат, 1981.
- 13. Fezoui L. Résolution des équations d'euler par un schéma de van leer en éléments finis. INRIA report. 1985. 358.
- 14. Chabard J.P., Pot G., Metivet B., Thomas B. A numerical solution of the Navier-Stokes equations for industrial applications // Numerical Methods in Laminar and Turbulent Flow, eds. C.Taylor, P.M. Gresho, R.L. Sani & J. Haiiser. 1989. (6)1. P. 285–298. 15. N3S-MUSCL 3.2. Manuel theorique, EDF-INRIA-
- SIMULOG 1996.
- 16. Аветисян А.Р., Алипченков В.М., Зайчик Л.И. Моделирование течения спонтанно конденсирующегося влажного пара в соплах Лаваля // ТВТ. 2002. Т. 40. № 6. C. 938.
- 17. Аветисян А.Р., Алипченков В.М., Зайчик Л.И. Влияние турбулентности на течение спонтанно конденсирующегося влажного пара в соплах Лаваля // TBT. 2003. T. 41. № 1. C. 65.
- 18. Avetissian A.R., Philippov G.A., Zaichik L.I. The Effect of Turbulence on Spontaneously Condensing Wet-Steam Flow // Nuclear Eng. and Design. 2005. V. 235. P. 1215.