С.Э. Тарасевич¹, Э.А. Болтенко², А.Б. Яковлев¹, Г.К. Ильин¹

Казанский государственный технический университет им. А.Н. Туполева, Россия (1) Электрогорский научно-исследовательский центр по безопасности АЭС, Россия (2)

ТЕПЛООТДАЧА ПРИ ВЫНУЖДЕННОЙ КОНВЕКЦИИ И КИПЕНИИ ВОДЫ В КОЛЬЦЕВЫХ КАНАЛАХ С ЗАКРУТКОЙ

АННОТАЦИЯ

Представлены результаты экспериментального исследования конвективного теплообмена и кипения в кольцевых каналах с проволочной закруткой при одно- и двухстороннем подводе теплоты электроконтактным методом.

1. ВВЕДЕНИЕ

Во многих элементах энергоустановок в качестве теплообменных устройств используются кольцевые каналы. Для интенсификации теплообмена как в докризисной, так и в закризисной областях может быть использована закрутка потока. В настоящее время теплоотдача в кольцевых каналах с закруткой мало исследована, имеющиеся данные получены в ограниченных диапазонах режимных и конструктивных параметров и носят в основном качественный характер.

2. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

2.1. Конвективный теплообмен в кольцевом канале с проволочной закруткой при одностороннем обогреве вогнутой стенки

Данное экспериментальное исследование проведено в концентричном кольцевом канале с радиальным входом и выходом при одностороннем обогреве вогнутой стенки при следующих режимных и конструктивных параметрах: число Рейнольдса, рассчитанное по средней осевой скорости, Re = 1000÷15000, давление $P = (1÷5)\cdot 10^5$ Па, тепловой поток $q = 15 \div 1000 \text{ кBt/m}^2$, внутренний диаметр кольцевого канала $d_1 = 0.016$ м, внешний диаметр кольцевого канала $d_2 = 0.018$ м. Закрутка осуществлялась спиральной навивкой проволоки на центральное тело канала (диаметр проволоки равен толщине кольцевого зазора), относительный шаг закрутки проволочной навивки T/de=11.3÷52.5 (эквивалентный диаметр кольцевого канала с закруткой d_e определялся по [1]). Подвод теплоты осуществлялся электроконтактным методом - пропусканием электротока непосредственно через нагреваемую стенку.

Эксперименты показали, что на вогнутой теплоотдающей поверхности имеет место неравномерность температурного поля по периметру. Наличие зон с повышенной температурой и, соответственно, с пониженной теплоотдачей связано с наличием застойных зон с "подветренной" стороны проволоки. При обработке данных число Nu определялось по среднему коэффициенту теплоотдачи по периметру поперечного сечения канала.

Результаты по конвективной теплоотдаче на вогнутой стенке представлены на рис.1. Очевидно, с увеличением степени закрутки проволочной навивки (с уменьшением величины T/d_e) величина теплоотдачи возрастает, что объясняется более интенсивным омыванием вогнутой стенки кольцевого канала под действием возникающей в закрученном потоке центробежной силы.

Рис. 1. Зависимости теплоотдачи при вынужденной конвекции на вогнутой стенке кольцевого канала при одностороннем обогреве

Как видно, результаты при различных относительных шагах закрутки T/de могут быть обобщены зависимостью:

Nu = C₁Re^{0.8}Pr_f^{0.43}
$$\left(\frac{Pr_f}{Pr_w}\right)^{0.25}$$
, (1)

где коэффициент C_1 является функцией степени закрутки На рис.2 представлена зависимость C_1 от параметра закрутки $d_{e'}/D$, который рассчитывался по формулам в [1], и получено:

$$\tilde{N}_I = 0.5 \left(\frac{d_e}{D}\right)^{0.78}.$$
(2)

Таким образом, итоговая зависимость для теплоотдачи на вогнутой поверхности при вынужденной конвекции и одностороннем обогреве имеет вид:

Nu =
$$0.5 \left(\frac{d_e}{D}\right)^{0.78} \text{Re}^{0.8} \text{Pr}_f^{0.43} \left(\frac{\text{Pr}_f}{\text{Pr}_w}\right)^{0.25}$$
. (3)

Рис. 2. Влияние параметра закрутки кольцевого канала d_e/D на теплоотдачу вогнутой поверхности

Полученная зависимость близка к зависимости, полученной в [1] для более высоких давлений P=(30÷160)·10⁵ Па:

$$Nu = 2.61 \cdot \left(\frac{d_e}{D}\right)^{0.78} \psi^{0.2} \operatorname{Re}^{0.5} \Pr_{f}^{0.43} \left(\frac{\Pr_{f}}{\Pr_{w}}\right)^{0.25} . (4)$$

Она отличается степенью при Re и наличием формпараметра $\psi=1+0.4\cdot(T/(d_2+d_1)^2)^{0.5}$. Следует отметить, что параметр ψ использован по аналогии с обобщением результатов по теплоотдаче в шнековых каналах и слабо меняется как в наших опытах, так и опытах [1] ($\psi=1.05\div1.14$), а выражение $\cdot \psi^{0.2}$ в (4) близко к 1. Поэтому зависимость (4) может быть представлена в более простом виде:

Nu = 2.63
$$\cdot \left(\frac{d_e}{D}\right)^{0.78} \text{Re}^{0.5} \Pr_f^{0.43} \left(\frac{\Pr_f}{\Pr_w}\right)^{0.25}$$
. (5)

2.2. Результаты экспериментов по конвективному теплообмену и кипению в кольцевом канале с проволочной закруткой при двустороннем обогреве

В настоящей работе также представлены результаты ранее не обработанных экспериментов по теплоотдаче при течении воды в кольцевых каналах с закруткой (T/d_e =8.96) при двустороннем обогреве, давлении P=(98÷103)·10⁵ Па, числе Рейнольдса Re=4000÷35000, тепловых потоках на выпуклой и вогнутой поверхностях q_1 =250÷1730 кВт/м² и q_2 =400÷2600 кВт/м², внутреннем диаметре кольцевого канала d_1 =0.007 м, внешнем диаметре кольцевого канала d_2 =0.009 м.

На рис.3 показаны температурные поля теплоносителя (t_f) , выпуклой (t_{w1}) и вогнутой (t_{w2}) стенок при конвективном теплообмене, наблюдающемся по всей длине канала. Конвективный теплообмен наблюдается при заметном недогреве жидкости до температуры насыщения, поэтому относительное паросодержание X имеет условно отрицательное значение и характеризует степень недогрева.

Рис.3. Температурные поля теплоносителя (*t_f*), выпуклой (*t_{w1}*) и вогнутой (*t_{w2}*) стенок при конвективном теплообмене в кольцевом канале с закруткой: *P*=100·10⁵ Па, ρW =1958 кг/(м²·c), *q₁*=1183 кВт/м², *q₂*=1755 кВт/м², *X_{6x}*= = -0,435, *X_{6bx}*=-0,031

Как видно, при конвективном теплообмене разница температур стенок и теплоносителя в основном мало меняется и уменьшается по длине канала, что говорит о слабом увеличении коэффициента теплоотдачи по длине как на вогнутой, так и выпуклой поверхностях, что обусловлено уменьшением вязкости воды с увеличением температуры по длине, а, следовательно, увеличением числа Рейнольдса.

Результаты по интенсивности теплоотдачи при конвективном теплообмене представлены на рис.4.

Рис.4. Зависимость чисел Нуссельта на выпуклой (Nu₁) и вогнутой (Nu₂) поверхностях от числа Рейнольдса при конвективном теплообмене в кольцевом канале с закруткой в условиях двустороннего обогрева: 1 – расчет для кольцевого канала без закрутки [1]; 2 - расчет по (4)

Очевидно, что интенсивность теплосъема на вогнутой и выпуклой теплоотдающих поверхностях кольцевого канала с закруткой потока отличаются как качественно, так и количественно. На вогнутой поверхности имеет место интенсификация теплосъема, обусловленная двумя факторами - геометрическим увеличением скорости за счет закрутки и воздействием массовых сил на турбулентность. Результаты на вогнутой поверхности хорошо описываются выражением (4) (линия 2), полученным в том же диапазоне режимных параметров, но при относительных шагах закрутки $T/d_e=5$, 7 и 15. Таким образом, согласование этих экспериментальных данных при $T/d_e=8.96$ с расчетами по (4) подтверждает работоспособность этой формулы.

На выпуклой поверхности интенсификация теплообмена не отмечена и данные по теплоотдаче здесь хорошо описываются зависимостью для кольцевого канала без закрутки.

На рис.5 показаны температурные поля в случае начала поверхностного кипения.

Рис.5. Температурные поля теплоносителя (T_f), выпуклой (T_{w1}) и вогнутой (T_{w2}) стенок в случае начала поверхностного кипения в кольцевом канале с закруткой: P= 100.7·10⁵ Па, ρ W= 1973 кг/(M^2 c), q₁= 1526 кВт/ M^2 , q₂= 2262 кВт/ M^2 , X_{BX} = -0.422, X_{BMX} = 0.095

Поверхностное кипение наблюдается при недогреве жидкости, когда ее средняя температура ниже температуры насыщения. При начале поверхностного кипения температура стенки перестает меняться по длине и несколько превышает температуру насыщения жидкости. Важным моментом является определение температуры начала кипения t_{HK} – средней температуры жидкости, при которой начинается кипение. Как видно из представленного графика, кипение на выпуклой поверхности на всех режимах, начинается раньше чем на вогнутой. Это вызвано в первую очередь более интенсивным конвективным теплообменом на вогнутой поверхности.

Полученные данные по температуре начала кипения могут быть обобщены выражением аналогичным зависимости для прямых каналов [2]:

Z

$$\Delta i_{HK} = i' - i_{HK} = C \cdot q^{1.1} \cdot d^{0.2} \cdot (\rho'' / \rho')^{0.3} / (\rho W)^{0.9}, \qquad (6)$$

где *C*=const, *d*=*d*_e, м; $\Delta i_{HK}=i'-i_{HK}$ – изменение теплосодержания жидкости от температуры начала кипения до температуры насыщения, Дж/кг; р" и р' – плотности соответственно газовой и жидкой фаз на линии насыщения, кг/м³; р*W* – массовая скорость потока, кг/(м²·с).

Однако степень влияния плотности теплового потока в настоящих опытах несколько отличается от величины 1.1 в [2] и составляет для выпуклой поверхности 1.3÷1.4, а для вогнутой – 1.5÷1.6 (рис.6). Для получения достоверной зависимости для определения температуры начала кипения в

кольцевых каналах с закруткой в широком диапазоне режимных и конструктивных параметров необходимо проведение дополнительных исследований.

Рис.6. Влияние величины плотности теплового потока на температуру начала кипения в кольцевом канале

На рис.7 показаны температурные поля в случае, когда уже на входе в канал начинается кипение жидкости.

Рис.7. Температурные поля теплоносителя (T_f), выпуклой (T_{w1}) и вогнутой (T_{w2}) стенок при развитом пузырьковом кипении в кольцевом канале с закруткой: P=100.5 \cdot 10⁵ Па, ρ W=1078 кг/(m²c), q₁=328 кBт/m², q₂=560 кBт/m², X_{BX}=0.06, X_{BbIX}=0.285

При этом температура среды имеет температуру насыщения и мало меняется по длине канала (несколько падает в связи с уменьшением давления).Видно, что при кипении температура вогнутой стенки мало меняется и на ней всегда наблюдаются высокие коэффициенты теплоотдачи, характерные для пузырькового кипения. На выпуклой стенке наблюдается резкий рост температуры стенки с увеличением паросодержания X, что свидетельствует об ухудшении условий теплообмена (рис.8). Это вызвано отбрасыванием жидкой фазы под действием центробежной силы к вогнутой поверхности и вытеснением пара к выпуклой стенке. Таким образом, на выпуклой поверхности с увеличением количества пара в канале наблюдается преимущественно конвективный теплообмен.

a) $P=100.2 \cdot 10^5$ Ta, $\rho W=1022$ KF/(m²·c), $q_I=972$ KBT/m², $q_2=1458$ KBT/m², $X_{GX}=-0.434$, $X_{GN}=0.216$

6) $P=100.2 \cdot 10^5$ Πa, $\rho W=1956$ κг/(m²·c), $q_1=1434$ κBr/m², $q_2=2271$ κBr/m², $X_{6x}=-0.11$, $X_{6blx}=0.419$

Рис.8. Изменение коэффициентов теплоотдачи на выпуклой (α₁) и вогнутой (α₂) поверхностях кольцевого канала с закруткой потока

Результаты по теплоотдаче при развитом пузырьковом кипении представлены на рис.9. Как видно, они несколько отличаются от известной зависимости Рассохина [3] (прямая линия на рис.9) для прямых каналов. Не отмечено заметного влияния плотности теплового потока q на коэффициент теплоотдачи при развитом кипении в кольцевом канале с закруткой, хотя по зависимости представленной в [3] $\alpha_{\kappa un} \sim q_w^{2/3}$.

Следует отметить, что на вогнутой поверхности теплоотдача в целом несколько выше, что обусловлено влиянием конвективной составляющей теплоотдачи, которая выше на вогнутой поверхности.

Чтобы получить зависимости для расчета теплоотдачи при развитом кипении в кольцевом канале с закруткой необходимо продолжение исследования в широком диапазоне режимных и конструктивных параметров.

Рис.9. Теплоотдача при развитом пузырьковом кипении в кольцевом канале с закруткой: линия 3 – расчет по формуле в [3]

ЗАКЛЮЧЕНИЕ

При проведении дальнейших экспериментальных исследований предполагается значительно расширить диапазоны режимных и конструктивных параметров и получить обобщающие зависимости для определения температуры начала кипения и коэффициентов теплоотдачи при кипении в кольцевых каналах с закруткой потока.

СПИСОК ОБОЗНАЧЕНИЙ

Nu – число Нуссельта;

- Prf число Прандтля при средней температуре потока;
- Pr_w число Прандтля при температуре стенки;

Re – число Рейнольдса;

- *d*_e эквивалентный диаметр канала, м;
- *D* диаметр навивки, м;
- *P* давление, Па;
- q плотность теплового потока, BT/M^2 ;
- t температура, °C;
- Т шаг проволочной закрутки, м.
- Х-относительное паросодержание;
- ρW массовая скорость, кг/(м²·с);
- α коэффициент теплоотдачи, BT/(м²·K).
- Индексы:
- 1 выпуклая поверхность;
- 2 вогнутая поверхность;
- *вх* вход;

вых – выход;

кип – кипение.

СПИСОК ЛИТЕРАТУРЫ

- 1. Болтенко Э.А., Тарасевич С.Э., Обухова Л.А. Интенсификация теплосъема в кольцевых каналах с закруткой потока // Изв. РАН. Энергетика. 2001. № 3. С.99–105.
- Тарасова Н.В., Орлова В.М. Исследование гидравлического сопротивления при поверхностном кипении воды в трубе // Теплоэнергетика. 1962. №6. С.48.
- 3. Рассохин Н.Г., Швецов Р.С., Кузьмин А.В. Расчет теплоотдачи при кипении // Теплоэнергетика. 1970. №9. С.58.