Л.П. Холпанов¹, Ю.С. Поляков²

*Институт проблем химической физики РАН, г. Черноголовка (Россия) (1) **USPolyResearch, Эшланд, Пенсильвания 17921 (США) (2)

СОПРЯЖЕННЫЙ ТУРБУЛЕНТНЫЙ ТЕПЛОМАССООБМЕН ПРИ ХИМИЧЕСКИХ ПРЕВРАЩЕНИЯХ

АННОТАЦИЯ

Предложен метод расчета турбулентного тепломассообмена при химических превращениях с условием сопряжения на границе реактор – охладитель. Метод апробирован на моделировании быстрых процессов полимеризации.

1. ВВЕДЕНИЕ

Процессы турбулентного тепломассообмена при химических превращениях, сопровождаемые тепловыделениями и теплопоглощениями, получили широкое распространение в химической технологии, теплофизике и химической физике [1-4]. Наиболее известными примерами являются процессы горения [2] и быстрые реакции полимеризации [5].

Необходимость в учете тепло- и массопереноса при химических превращениях возникает в случаях, когда характерное время химической реакции становится близким по значению к характерному времени переноса тепла или вещества. Физические процессы переноса вещества и тепла: диффузия, теплопроводность, конвекция, турбулентность, и т.д., особенно в условиях их взаимодействия, тогда начинают оказывать значительное влияние на конечные результаты процессов, приводя к сложным нелинейным математическим моделям.

Решения этих задач базируются на уравнениях сохранения количества движения, вещества и энергии. Сами решения осложнены наличием малых параметров при старших пространственных производных и нелинейных источников (стоков). Малые параметры при старших производных и большие величины источников (стоков) по-разному ведут себя на различных интервалах времени [1]. Все это требует разработки специальных подходов и методов решения задач нестационарного тепломассообмена.

Особый интерес представляет моделирование процессов в двухфазных потоках [6]. Адекватность создания дифференциальной формы для описания таких процессов осложнена не только уравнениями в объеме двухфазного пространства, но корректным выражением граничных условий на границе раздела фаз (поверхности разрыва фаз).

Большинство работ для описания сопряжения на границе раздела двух фаз используют в качестве граничного условия второй фазы (помимо равенства субстанций) известный закон Ньютона (граничное условие третьего рода), в то время как для первой фазы применяют градиент самой субстанции. Получается ситуация, при которой градиент субстанции, характеризующий первую фазу в точке, приравнивается к средней величине второй фазы, что математически не корректно и не адекватно отображает физику процесса.

В настоящей работе в качестве граничного условия используется условие сопряжения на границе раздела фаз, а именно, равенство температур и равенство локальных потоков. С одной стороны, такая постановка задачи усложняет само решение задачи за счет добавления еще одного уравнения переноса, но, с другой стороны, позволяет адекватно описывать двухфазный перенос в условиях сопряжения на границе раздела фаз.

2. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

В качестве объекта исследования в работе рассматривается турбулентный конвективный тепломассообмен во внутренней трубе (реакторе), в которой проходит химическая реакция с выделением (поглощением) тепла. Снаружи этот реактор коаксиально охлаждается (нагревается) турбулентным потоком теплоносителя. На границе раздела реактор—охлаждающая (нагревающая) жидкость применены условия сопряжения – равенство температур и локальных тепловых потоков.

Обозначим зону реактора и зону охладителя (нагревателя) вместе через зону I, которая представляет собой две концентрические трубы, зону реактора – через зону II, зону охладителя (нагревателя) – через зону III.

Классическим примером такой конфигурации является процесс быстрой полимеризации в трубчатом реакторе с отводом тепла через внешнюю стенку [5,7]. Этот процесс был описан с помощью нестационарной двумерной макрокинетической модели, включающей законы сохранения массы для мономера и катализатора и закон сохранения энергии в зоне реакции [7]. Были получены численные решения для стационарного случая при постоянных (не зависящих от температуры) значениях скоростей реакции и без учета влияния распределения температуры охлаждающей жидкости [5,7]. Данная постановка задачи не учитывала взаимодействия температурных и концентрационных полей в условиях нелинейного источника, взаимосвязанного с полями.

В работе проведено математическое моделирование нестационарного сопряженного тепломассообмена с учетом изменения скоростей реакций согласно уравнению Аррениуса на примере процесса быстрой полимеризации.

Рассмотрим случай, когда в зоне II содержится смесь из двух компонентов: а (мономер) и b (катализатор – активный центр). Между этими компонентами проходит экзотермическая химическая реакция 2-го порядка по кинетической модели реакции полимеризации, преложенной в работе [5,7]. В этой зоне распределение температуры подчинено законам конвективной турбулентной теплопередачи с учетом выделения тепла в результате химических реакций.

Одним из способов улучшения характеристик полимеров является отвод тепла из зоны реакции II. Отвод тепла осуществляется в зоне охладителя через тонкую перегородку из материала с бесконечной проводимостью так, чтобы ее сопротивлением можно было пренебречь. Для этого в зону III подается охлажлаюшая жилкость.

Математическая модель включает законы сохранения для зоны II (зона реактора):

$$\frac{\partial \mathbf{u}_2}{\partial \tau} + (\mathbf{u}_2 \nabla) \mathbf{u}_2 =$$

$$= -\frac{1}{\rho} \nabla p + \nabla (\mathbf{v}_{T2} \nabla \mathbf{u}_2) + \mathbf{F}_2, \qquad (1)$$

$$\operatorname{div} \mathbf{u}_2 = 0, \qquad (2)$$

$$=0,$$

$$\frac{\partial c_a}{\partial \tau} + f_1 \frac{\partial^2 c_a}{\partial \tau^2} + (\mathbf{u}_2 \nabla) c_a =$$

$$= \nabla (D_T \nabla c_a) - k_a c_a c_b \exp \left[-\frac{E_a}{RT_2} \right], \qquad (3)$$

$$\frac{\partial c_b}{\partial \tau} + f_2 \frac{\partial^2 c_b}{\partial \tau^2} + (\mathbf{u}_2 \nabla) c_b =$$

$$= \nabla (D_T \nabla c_b) - k_b c_b \exp \left[-\frac{E_b}{RT_2} \right], \qquad (4)$$

$$p_2 c_{p2} \left[\frac{\partial \tau}{\partial \tau} + J_3 \frac{\partial \tau^2}{\partial \tau^2} + (\mathbf{u}_2 \mathbf{v}) I_2 \right]^{=}$$

$$= \nabla (\lambda_{T2} \nabla T_2) + Q_a k_a c_a c_b \exp \left[-\frac{E_a}{RT_2} \right]$$
(5)

и зоны III (зона охлаждения):

$$\frac{\partial \mathbf{u}_{3}}{\partial \tau} + (\mathbf{u}_{3} \nabla) \mathbf{u}_{3} = -\frac{1}{\rho} \nabla p + \nabla (v_{T3} \nabla \mathbf{u}_{3}) + \mathbf{F}_{3}, \quad (6)$$

$$\operatorname{div} \mathbf{u}_3 = 0 , \qquad (7$$

$$\rho_3 c_{p3} \left(\frac{\partial T_3}{\partial \tau} + (\mathbf{u}_3 \nabla) T_3 \right) = \nabla \left(\lambda_{T3} \nabla T_3 \right). \tag{8}$$

Введем обобщенную функцию $F = \{c_a, c_b, T_2\}$. Тогда согласно условию симметрии

$$\frac{\partial F}{\partial r_2} = 0$$
 при $r_2 = 0$. (9)

Условия сопряжения зон II и III записываются в виде

$$T_2 = T_3, \ \lambda_2 \frac{\partial T_2}{\partial r_2} = \lambda_3 \frac{\partial T_3}{\partial r_3}$$
 при $r_2 = r_3 = R_2$. (10)

Условия сопряжения (10) выражают равенство температур и локальных тепловых потоков на границе раздела между зонами II и III [1]. Применяя их, можно найти локальное распределение температур в каждой зоне.

Условия отсутствия потока через непроницаемую стенку записываются в виде

$$\frac{\partial c_a}{\partial r_2} = \frac{\partial c_b}{\partial r_2} = 0$$
 при $r_2 = R_2$. (11)

На границе зоны III принимаем условие симметрии

$$\frac{\partial T_3}{\partial r_3} = 0$$
 при $r_3 = R_2 + R_3$. (12)

Такой выбор граничного условия основан на допущении, что аппарат, в котором происходят быстрые химические реакции, организован в виде совокупности трубчатых элементов, расположенных параллельно.

Используем условие первого рода на входе в реактор

$$c_a = c_{a1}(r_2), c_b = c_{b1}(r_2), T_2 = T_{21}, T_3 = T_{31}$$

при $x = 0$. (13)

Условие на выходе записывается в виде

$$\frac{\partial F}{\partial x} = 0$$
 при $x = L$, (14)

где $F = \{c_a, c_b, T_2, T_3\}$.

Следует иметь в виду, что под длиной L понимается эффективная длина тепломассообмена, которая определяется из расчета при условии, что концентрации мономера и активного центра выходят на постоянную величину. Она может также характеризовать величину активного участка тепломассообмена, кратность которого указывает на применение турбулизаторов в целях повышения интенсификации всего реактора.

Используем начальные условия

$$c_a = c_{a0}, c_b = c_{b0}, T_2 = T_{20}, T_3 = T_{30}.$$
 (15)

Упростим систему уравнений (1)-(8). Предположим, что мономер и катализатор в зоне II и жидкость для охлаждения в зоне III движутся со скоростями и2, и3, соответственно равными среднерасходовым скоростям, т.е. используем приближение Озеена [8]. Также при расчете будем использовать осредненные коэффициенты турбулентного переноса вдали от стенки. Принимаем, что вблизи стенки, на расстоянии 2 - 3 шагов от стенки, коэффициенты турбулентного переноса согласно теории Ландау-Левича, изменяются по линейному закону [9]. В этом случае основную роль вблизи стенки играет молекулярный перенос вещества и энергии. Поскольку исследования релаксационных, волновых процессов, а также поверхности Монжа, связанной с фазовыми переходами или химическими превращениями, представляют самостоятельный интерес, влиянием этих эффектов в данной работе будем пренебрегать.

С этими приближениями система уравнений (1)-(8) решена методом переменных направлений с конечно-разностными приближениями второго порядка. Причем преобразование уравнения Аррениуса проведено по способу, предложенному в [2], а дифференциальные члены аппроксимированы методом контрольного объема [10]. Решение дискретизованной совместной системы уравнений (5), (8) с учетом условий сопряжения (10) на границе раздела можно получить различными способами. В разработанном алгоритме использовался модифицированный метод прогонки, включающий следующую процедуру: сначала на оси реактора определяются первые прогоночные коэффициенты, затем их «гонят» до второй оси охладителя, где уже определяются значения искомой функции, по которым восстанавливают все температурные поля. При дискретизации производных в граничных условиях были использованы разностные приближения Тейлора со вторым порядком приближения. Нелинейный источниковый член, обусловленный химической реакцией, определяется с использованием его значений с предыдущего шага по времени.

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Расчеты были проведены для процесса изобутиленовой полимеризации [5, 7]. Согласно этим работам были выбраны следующие значения расчетных параметров:

$$\begin{split} R_3 &= \ 0.04 \text{ м}; \ \rho_2 = 635 \text{ кг/м}^3; \ c_{p2} = 2,17\cdot 10^3 \text{ Дж/ (К·кг)}; \\ Q_a &= 5,40\cdot 10^4 \text{ Дж/моль}; \ \rho_3 = 1000 \text{ кг/м}^3; \\ c_{p3} &= 4,18\cdot 10^3 \text{ Дж / (К кг)}; \ c_{a0} = 10^3 \text{ моль/м}^3; \\ c_{b0} &= 2 \text{ моль/м}^3; \ T_{20} = T_{21} = 293 \text{ K}, \ u_2 = 5 \text{ м/c}, \\ \langle D_T \rangle &= \langle \lambda_2^* \rangle = 0,025 \text{ m}^2/\text{c}, k_a = 2,95\cdot 10^4 \text{ m}^3/(\text{моль c}); \\ E_a &= 1,26\cdot 10^4 \text{ Дж/моль}; \qquad k_b = 3.37\cdot 10^4 \text{ c}^{-1}; \\ E_a &= 1,67\cdot 10^4 \text{ Дж/моль}. \end{split}$$

Известно два способа ввода катализатора и мономера в реактор: совместный ввод реагентов и раздельный. Расчеты проведены для обоих случаев. В работе [5] экспериментально установлено, что процесс полимеризации проходит наиболее эффективно, когда раствор катализатора подается около стенки реактора, а раствор мономера – ближе к центру реактора. Наиболее интересные зависимости получены при раздельном входе для условия, когда катализатор занимает 0.3 R_2 от стенки реактора, а остальное расстояние, равное $0.7R_2$, занимает мономер. Распределение полей концентрации и температуры мономера и катализатора в зоне II и температуры охлаждающей жидкости в зоне III представлено на рис. 1.

Рис. 1. Зависимости концентрации мономера (*a*), концентрации активного центра (б), температуры в зоне реактора (*в*) и температуры охлаждающей жидкости (г) от продольной и радиальных координат при стационарных условиях: $R_2 = 0.2 \text{ м}, L = 0.5 \text{ м}, u_3 = 7.5 \text{ м/c}, T_{30} = T_{31} = 293 \text{ K}$. Остальные параметры представлены в тексте

Как следует из рис. 1, а, б, на входе в реактор наблюдается резкое изменение концентрации мономера и катализатора, представленное крутизной, в направлении зоны смешения. При этом картина быстрой реакции двух веществ подобна взаимодействию двух параллельно смешивающихся струй. Крутизна изменения концентраций реагентов и катализатора постепенно спадает в направлении стенки, где продукты реакции охлаждаются жидкостью зоны III. Выделившееся тепло реакции в реакторе (в зоне II) охлаждается жидкостью зоны III. Причем, как видно из рис. 1, в, г процесс выделения тепла реакции и последующее охлаждение продукта реакции представлены на этом рисунке как два конкурирующих процесса. В связи с этим эта зависимость проходит через максимум. Безусловно, оптимальный случай — это тот, когда тепло реакции сразу же отводится охлаждающей жидкостью. По мере увеличения расстояния от входа крутизна пика постепенно рассасывается, что указывает на усиление влияния процесса охлаждения на продукты реакции.

СПИСОК ОБОЗНАЧЕНИЙ

с – концентрация, моль/м³;

с_n – удельная теплоемкость, Дж / (К·кг);

 D_T – коэффициент турбулентной диффузии, м²/с;

 E_a – эффективная энергия активации реакции мономера с активным центром (роста цепи), Дж;

E_b – эффективная энергия активации реакции обрыва цепи, Дж;

F – вектор объемных сил;

 f_1, f_2, f_3 – параметры уравнения гиперболического типа, с:

 k_a – предэкспоненциальный множитель скорости реакции мономера с активным центром (роста цепи), м³/(моль·с);

k_b – предэкспоненциальный множитель скорости реакции обрыва цепи, 1/с;

L – длина реактора, м;

p – давление, Па;

 Q_a – теплота реакции мономера с активным центром (роста цепи), Дж/моль;

R – универсальная газовая постоянная, Дж/к;

 R_2 – радиус трубчатого реактора, м;

*R*₃ – «радиус» зоны охлаждения, м;

*г*₂ – радиальная координата в зоне II, м;

*г*₃ – радиальная координата в зоне III, м;

Т – температура, К;

- **и** вектор скорости;
- u осредненное значение скорости, м/с;
- *х* продольная координата, м;
- λ коэффициент молекулярной теплопроводности, Дж / (К м сек);

 λ^* – приведенный коэффициент турбулентной теплопроводности, м $^2/c;$

 λ_T – коэффициент турбулентной теплопроводности, Дж / (К·м·сек):

 v_{τ} – коэффициент турбулентной вязкости, м²/с;

 ρ – плотность, кг/м³;

τ – время, с;

индексы

- θ начальное значение;
- 1 значение на входе в реактор;
- 2 зона II;
- 3 зона III;
- а-мономер;
- *b* катализатор (активный центр).

СПИСОК ЛИТЕРАТУРЫ

- 1. Холпанов Л.П., Шкадов В.Я. Гидродинамика и тепломассообмен с поверхностью раздела. М.: Наука, 1990. 280 с.
- 2. Франк-Каменецкий Д.А. Диффузия и теплопередача в химической кинетике. М.: Наука, 1987.491 с.
- Вольперт А.И., Худяев С.И. Анализ в классах разрывных ных функций и уравнения математической физики. М.: Наука, 1975. 393 с.
- Труды Второй Российской национальной конференции по теплообмену. В 8 т. Т3. Свободная конвекция. Теплообмен при химических превращениях. М.: Издательство МЭИ, 304 с.
- 5. Minkser K.S., Berlin A.A. Fast Polymerization Processes. Amsterdam: Gordon & Breach, 1996. 146 p.
- Академик С.С. Кутателадзе. Избранные труды. Новосибирск: Наука. Сиб. отд-ние, 1989. 428 с.
- Calculation and simulation of the polymerization of isobutylene as a fast reaction. A.A. Berlin, K.S. Minsker, Yu.A. Sangalov, et al. Polymer Sci. USSR. 1981. Vol. 22. P. 625–634.
- 8. **Oseen C.W.** Uber die Stokessche Formel und uber eine verwandte Aufgabe in der Hydrodynamik. Ark. F. Math. Astrom. Och Fys. 1910. Vol. 6. № 29.
- 9. Левич В.Г. Физико-химическая гидродинамика. М.: Физматлит, 1959. 700 с.
- Роуч П. Вычислительная гидродинамика. М.: Мир, 1980. 616 с.

Работа частично поддержана РФФИ №05-03-32254