Г.В. Габбасова, Ю.В. Полежаев

Институт высоких температур РАН, Москва, Россия

ВЛИЯНИЕ ГОРЕНИЯ НА МАСШТАБ ТУРБУЛЕНТНОСТИ СТРУЙ, СГОРАЮЩИХ В АТМОСФЕРЕ

АННОТАЦИЯ

Измерения высоты пламени не являются простым, так как вследствие турбулентности течения пламя нестационарно, а его мгновенная форма имеет «рваный» вид. «Куски» горящего газа отделяются от основного пламени и летят вверх, уменьшаясь в размерах. Большинство измерений высоты пламени, известных из литературы, выполняется «на глаз», и точность их невелика.

Определенную ценность могут представлять не результаты одиночных испытаний, а обобщения большого числа данных, в широком диапазоне определяющих параметров. Сбором именно такой информации и занимается наш коллектив, что обеспечивает достоверность сделанных обобщений.

1. ВВЕДЕНИЕ

Отличительной особенностью турбулентных затопленных струй является отсутствие твердых границ, а следовательно, и ламинарного подслоя, что дает возможность полностью пренебречь влиянием молекулярной вязкости.

На внешней границе струи при ее движении возникают вихри, вследствие которых происходит выброс конечных масс жидкости (молей) или турбулентный обмен с окружающей средой. У этого явления есть много признаков, родственных с турбулентным пограничным слоем, образующимся на поверхности тела, обтекаемого равномерным потоком. Но есть и принципиальные различия, главное из которых сводится к характеру изменения масштаба турбулентности или длины пути смешения « ℓ ». Если в пограничном слое $\ell = 0$ на твердой поверхности обтекаемого тела, то на некотором расстоянии от нее $\ell = ky$ (что является неплохим допущением, тем более, что $k \approx 0,4$ – постоянная Кармана, остающаяся одинаковой для многих типов течения).

Применительно к свободным струям такой закон изменения масштаба турбулентности ℓ не выполняется, что намного осложняет решение прикладных задач и построение фундаментальных законов турбулентного горения.

2. АНАЛИЗ ТУРБУЛЕНТНОСТИ В ТУРБУЛЕНТНЫХ ДИФФУЗИОННЫХ ПЛАМЕНАХ

Форма диффузионного пламени, в частности, его высота дает возможность получить важную информацию о процессах гомогенного горения и о влиянии на них турбулентности. Доказано, что число Рейнольдса является определяющим, но не единственным критерием, от которого зависит безразмерная высота факела L/d_0 . Вторым критерием подобия выступает отношение диаметра сопла d_0 к «пороговому» значению $d_* = 3 \cdot 10^{-3}$ м. При $d_0 \le d_*$ и достаточно больших числах Рейнольдса ($\text{Re}_0 > 10^4$) безразмерная высота подчиняется общей (единой) зависимости от Re_0 :

$$(L/d_0) \sim \text{Re}_0^{-0,2}$$
,

где $\operatorname{Re}_0 = \frac{\rho_0 u_0 d_0}{\eta_0}$. Для всех $d_0 > d_*$ зависимость

высоты факела от Re_0 расслаивается, пропорционально корню квадратному из отношения (d_0/d_*) .

Такое различие критериальных закономерностей приводит к заключению о нарушении равновесия между процессами генерации и диссипации турбулентной энергии.

Это утверждение, по крайней мере, качественно согласуется с оценкой границ ламинарнотурбулентного перехода в диффузионных пламенах. Если при $d_0 \le d_*$ эти границы соответствуют величинам $\operatorname{Re}_{tr,1} = 2300$ и $\operatorname{Re}_{tr,2} = 5000$, то при увеличении отношения (d_0/d_*) до 10 границы ламинарно-турбулентного перехода оказываются в 2-3 раза ближе.

Анализ опубликованных работ [1, 2] по струйнофакельному горению газов показал, что ядром проблемы турбулентного горения является несомненно вопрос о масштабе.

На основании этих результатов вычислены корреляционные функции $R(\tau) = u(t+r) u(t)/{u'}^2$, по которым рассчитан интегральный масштаб турбулентности

$$\ell = \overline{u} \int_{0}^{\tau_0} R(\tau) \mathrm{d}\tau \,. \tag{1}$$

На рис. 1, 2 представлена динамика изменения этого масштаба как вдоль оси L, так и по радиусу r, измеренному перпендикулярно оси в двух поперечных сечениях на расстоянии L = 60 и L = 90 мм от среза сопла.

По этим результатам обработки экспериментальных исследований работы [3] можно сделать следующие выводы:

1) по отношению к радиусу сопла $r_0 = 2,5$ мм макромасштаб ℓ в струе без горения монотонно

возрастает как с увеличением расстояния *L*, так и поперек струи с ростом радиуса *r* от ее оси;

2) наличие горения на периферии струи приводит к резкому увеличению температуры и, как следствие, к росту масштаба ℓ .

3) наложение профилей функций $\ell(r)$ и T(r) показывает, что в первом приближении они подобны.

Также близки оказались кривые изменения этих параметров вдоль оси струи.

Рис. 1. Осевые профили масштаба турбулентности ℓ и температуры *T* факела в зависимости от его длины *L*, $\operatorname{Re}_0 = 4200$:

Рис. 2. Радиальные профили масштаба турбулентности ℓ и температуры T факела при L = 60 мм (a) и при L = 90 мм (δ) Re₀ = 4200 :

 $1 - \ell$ (с горением); $2 - \ell$ (без горения); 3 - температура

Если в изотермической струе макромасштаб ℓ почти вдвое меньше толщины струи δ , то при наличии горения оказалось, что масштаб ℓ во много раз превышает гидродинамическую толщину струи δ , (т.е. измеренную по профилю скорости). Это ставит под сомнение классическую интерпретацию масштаба ℓ как некоего диаметра турбулентного моля жидкости.

Не останавливаясь далее на особенностях визуальной интерпретации, полученных в работе [2] результатов, перейдем к оценке правомерности модели турбулентности, предложенной Л. Прандтлем в 1925 году и уточненной им же в 1945 году.

Как известно, Л. Прандтль сделал два фундаментальных предположения.

 Амплитуда пульсаций скорости в потоке имеет порядок

$$(\overline{u'}) \sim \ell\left(\frac{\mathrm{d}u}{\mathrm{d}r}\right).$$

2. Величина напряжения турбулентного трения, в свою очередь, пропорциональна

$$(\overline{u'v'}) \sim \ell^2 \left(\frac{\mathrm{d}u}{\mathrm{d}r}\right) \left|\frac{\mathrm{d}u}{\mathrm{d}r}\right|.$$
 (2)

Обобщая на случай анизотропной турбулентности соотношения (1) и (2), следует записать их в виде функции от энергии турбулентных пульсаций

$$K = \frac{1}{2} (\overline{u'}^2 + \overline{v'}^2 + \overline{w'}^2):$$

$$(\overline{u'v'}) = C_{\mu} \ell \sqrt{K} \left(\frac{\mathrm{d}u}{\mathrm{d}r}\right), \qquad (3)$$

где

Здесь учитывается то обстоятельство, что согласно экспериментальным данным, в том числе и полученным в работе [2], на оси струи пульсации скорости u', а также кинетическая энергия K отличны от нуля, тогда как градиент скорости $\left(\frac{du}{dr}\right)_{r=0} = 0$ и турбулентное трение $(\overline{u'v'}) = 0$.

 $\sqrt{K} = C_k \quad \ell \quad \left(\frac{\mathrm{d}u}{\mathrm{d}r}\right)_{\mathrm{max}}.$

В таблице представлены измеренные в двух сечениях (L = 60 и L = 90 мм) максимальные значения ряда пульсационных параметров, а также градиент

осредненной составляющей скорости $\left(\frac{\mathrm{d}u}{\mathrm{d}u}\right)$

$$\left(\frac{u}{r}\right)_{\max}$$

(4)

ЗАКЛЮЧЕНИЕ

Предложена физически наглядная модель диффузионного горения топливной струи в пространстве, заполненном окислителем, которая базируется на предположении о квазицилиндрической форме пламени. Кстати, это не просто формальное допущение, а экспериментальный факт, подтвержденный фотографиями с достаточно малыми временами экспозиции. Интересно отметить, что на подоб-

	Размерность	Без горения		С горением	
		<i>L</i> = 60 мм	<i>L</i> = 90 мм	<i>L</i> = 60 мм	<i>L</i> = 90 мм
$(u'v')_{\max}$	м ² /c ²	1,23	0,67	1,96	1,97
<i>u</i> ′	м/с	1,85	1,42	2,54	2,64
v'	м/с	1,53	1,14	1,42	1,41
w'	м/с	1,57	1,18	1,82	1,60
K	м/с	4,12	2,35	5,90	5,76
$(du/dr)_{max}$	1/c	1436,00	563,00	3570,00	2466,00
ℓ – измеренное по (1)	М	0,00333	0,00429	0,01254	0,0166
u _{max}	м/с	12,60	9,62	22,06	19,22
$C_{\mu} = (u'v'/K)^2$		0,09	0,08	0,11	0,12
С _µ среднее		0,10			
$\ell = u'v'/((\mathrm{d}u/dr)K^{0,5}C_{\mu}.$	М	0,00425	0,00779	0,00228	0,00336
δ	М	0,011	0,014	0,006	0,007
ℓ/δ		0,39	0,56	0,38	0,48
ℓ/δ среднее		0,45			
$C_k = K^{0,5} / (\ell(\mathrm{d}u/\mathrm{d}r))$		0,33	0,35	0,30	0,29
С _k среднее		0,32			

Таблица 1. Анализ экспериментальных данных по параметрам турбулентности в водородных струях, истекающих в воздух

ных фотографиях обнаружен еще один важный процесс — гидродинамическая неустойчивость горящих струй. Амплитуда этих колебаний составила несколько калибров, что, возможно, послужило причиной последующих расхождений в оценке интегрального масштаба турбулентности.

Рассмотрены экспериментальные данные, в частности, результаты прямых измерений масштаба турбулентности ℓ и установлено, что масштаб турбулентности ℓ в турбулентных струях, рассчитанный на основании автокорреляционных функций, имеет принципиально различный функциональный вид при наличии горения и без него, а в изотермических струях практически подобен толщине слоя смещения δ , которая линейно возрастает с удалением от среза сопла.

А также важно отметить, что отношение масштаба турбулентности ℓ к толщине слоя смешения δ остается приблизительно тем же в струях с горением и без него.

СПИСОК ОБОЗНАЧЕНИЙ

d – диаметр, м;

- C_k константа пропорциональности в (4);
- C_{μ} константа пропорциональности в (3);
- К кинетическая энергия, Дж;
- *k* постоянная Кармана;

- *L* высота пламени, м;
- ℓ масштаб турбулентности, м;
- *R* автокорреляционный коэффициент;
- *r* радиус, м;
- *T* температура, К;
- и линейная скорость, м/с;
- у координата;
- Re-число Рейнольдса;
- $\delta-$ гидродинамическая толщина струи, м;
- η коэффициент вязкости, кг/(м·с);
- ρ плотность, кг/м³;
- τ время, с.
- Индексы:
- тах максимальная;
- tr переход;
- 0-начальная;
- * характерное значение.

СПИСОК ЛИТЕРАТУРЫ

- 1. Hideaki Kobayashi, Teppei Nakashime, Takashi Tamure, Kaory Maruta and Takashi Nioka. Turbulence Measurements and Observations of Turbulent Premixed Flames of Elevated Pressures up to 3 MPa // Combustion and Flame. 1997. Vol. 108. P. 104–117.
- 2. Toshimi Takagi, Hyun-Dong Shin and Akira Ishio. Properties of Turbulence in Turbulent Diffusion Flames. // Combustion and Flame. 1981. Vol. 40. P. 121–140.
- 3. Законы горения / Под общ. ред. Ю.В. Полежаева. М.: Энергомаш, 2006. 352 с.