А.М. Пылаев, М.Д.Диев

Московский государственный технический университет им. Н. Э. Баумана, Россия

АНАЛИЗ УСТОЙЧИВОСТИ РАВНОВЕСИЯ ЖИДКОСТИ В ПОЛОСТЯХ ПРЯМОУГОЛЬНОГО СЕЧЕНИЯ

АННОТАЦИЯ

Проведён сравнительный анализ картин плоских течений для полостей с различными отношениями высоты и ширины сечений. Получены аппроксимационные зависимости критических чисел Рэлея (Ra_{kp}) от названных отношений для вариантов с вертикальными границами идеально как теплоизолированными, так и теплопроводными (всегда для первых пяти по возрастанию значений Ra_{kp}). Представлены и результаты для полостей с сечениями эллиптического типа. В работе предпринята определённая модернизация метода Бубнова—Галёркина с использованием редуцируемых алгебраических систем уравнений для коэффициентов в двойных разложениях типа Фурье.

1. ВВЕДЕНИЕ

Цель и содержание проведённого исследования обусловлены потребностями расчета теплового режима приборных отсеков космических аппаратов в условиях слабой гравитации. В силу многообразия как геометрии каналов или прослоек в элементах конструкций, так и вариантов неравномерности распределения температуры на границе полостей (за счёт тепловых источников в отсеках) представлялись реализуемыми и варианты с выполнением обязательного условия механического равновесия нагретой жидкости. В связи с этим разработан метод анализа линейных возмущений равновесия [1-3] в полостях, неограниченных в направлении оси z, с несложным аналитическим описанием границы в сечении ху; предусмотрен анализ возмущений как плоских, т.е. не зависящих от z, так и периодических по z. При сопоставлении возрастающих последовательностей {Ra_{KD}} для различающихся волновых чисел — пересечений интервалов значений для { Ra_{kp}} с совпадающим номером не выявлено [3]. При этом минимальные значения в таких последовательностях, наиболее опасные в смысле нарушения равновесия, как правило, оказывались близкими к значениям, соответствующим плоским течениям. Поэтому плоские течения и рассмотрены в данной работе. Возможны и другие приложения получаемых результатов, в частности, использование критических движений в роли естественного полного базиса для разложения конвективных движений в полости [4].

2. ПОСТАНОВКА ЗАДАЧИ

Применены линеаризованные уравнения тепловой конвекции в приближении Буссинеска [5]. Полученные соотношения подстановкой значений {*V*, $T_0+T_{\rm B}, p_0+p_{\rm B}$ для скорости (м/с), температуры (К) и давления (Па) приведены к безразмерному виду; в качестве масштабов приняты $L, \theta_0 L, a/L, L^2/(va)^{0.5}$, $v\rho_0 a/L^2$ для расстояния, температуры, скорости, времени и давления последовательно. Здесь $L \cdot u LY$ габаритные размеры в направлениях осей x и y; a, v, ρ, θ_0 — коэффициенты температуропроводности, кинематической вязкости, плотности, константа равновесного градиента температуры. Предусмотрены случаи периодической модуляции последнего или ускорения поля тяжести:

$$g = g_0(1 + \chi \sin \Omega \tau); \ \theta = \theta_0(1 + \Gamma \sin \Omega \tau). \tag{1}$$

Здесь Г, Ω и χ — относительная амплитуда, безразмерные частота и параметр модуляции. Для анализа

плоских течений вместо уравнений для V, $T_{\rm B}$ и $p_{\rm B}$ применена система с функцией тока ψ :

$$\Delta\Delta\psi + \operatorname{Ra}\frac{\partial T_{e}}{\partial x}\left(1 + \chi\sin\Omega\tau\right) = \frac{\partial(\Delta\psi)}{\partial\tau}\operatorname{Pr}^{-0.5},\qquad(2)$$

$$\Delta T_1 + (1 + \Gamma \sin \Omega \tau) \frac{\partial \Psi}{\partial x} = \Pr^{0.5} \frac{\partial T_e}{\partial \tau}; \qquad (3)$$

$$V_{x} = \frac{\partial \Psi}{\partial y}, V_{y} = -\frac{\partial \Psi}{\partial x}, \Delta \varphi = \frac{\partial^{2} \varphi}{\partial x^{2}} + \frac{\partial^{2} \varphi}{\partial y^{2}}, \varphi \in \{T_{B}, \Psi\}.$$

При постоянных *g* и θ правые части в (2), (3) принимались нулевыми. Область решения:

 $x \in (x_1; x_2), y \in (y_1; y_2), x_1 = 0, x_2 = 1;$

 $y_i = y_i(x), 0 \ge y_2 - y_1 \le Y, i \in \{1, 2\}.$

Граничные условия выбирались из перечня

$$y \in y_{i}: \frac{\partial \Psi}{\partial y} = \Psi = T_{\mathsf{B}} = 0; x \in x_{i}: \frac{\partial \Psi}{\partial x} = \Psi = 0;$$
$$y \in y_{i}, x \in x_{i}: \left(\frac{\partial T_{\mathsf{g}}}{\partial x}\right)^{\gamma-1} T_{\mathsf{B}}^{2-\gamma} = 0, \tag{4}$$

где γ — род условий для температуры ($\gamma \in \{1; 2\}$). Основная цель анализа — отыскание для системы (2)—(4) нетривиальных решений с действительными значениями Ra > 0. В монографиях [5, 6] и публикациях [7—12] рассматривались только частные варианты области решения.

3. МЕТОД РЕШЕНИЯ

Известно, что применение численного метода установления стационарного режима затруднительно (время установления по мере приближения к порогу устойчивости растет). К тому же этот подход требует повышенного внимания к получаемым результатам. Есть публикации с предложением в роли минимумов критических чисел Рэлея значений Ra_{кp}, соответствующих второй моде движений; первая же мода была пропущена авторами, по-видимому, из-за малой интенсивности теплообмена.

Поэтому повышен интерес к аналитическим возможностям. Строгое аналитическое решение задачи поставленного типа авторам неизвестно. Часто использовался подход с реализацией метода Бубнова—Галёркина с решениями для скорости или функции тока, лишь оптимальными в смысле приближения к точным, без возможности оценки погрешности в определении {Ra_{кp}}.

Собственные функции $\{\psi, T_B\}$ целесообразно искать в виде линейных суперпозиций М базисных функций, удовлетворяющих граничным условиям. Но в общем случае с конечным М применение метода приводит лишь к принципиально приближённому решению.

Здесь использованы разложения типа

$$\Psi = \sum_{r,s=1}^{N} A_{rs} \prod_{y}^{2} \prod_{x} f_{4}, T_{1} = \sum_{r,s=1}^{N} B_{rs} \prod_{x}^{\gamma-1} \prod_{y} f_{2},$$

$$f_{\phi} = \sin(\pi r x) \sin(\pi s \ y/Y)(r^{\phi} + s^{\phi}),$$

$$\Pi_{\phi} = \prod_{i} (\phi - \phi_{i}), i \in \{1, 2\}, N \to \infty.$$

(5)

Подстановка зависимостей (5) в уравнения (2), (3), дифференцирование и переразложение выражений в левых частях уравнений приводили к рядам использованного типа, но с гораздо более сложной структурой коэффициентов. Наконец, после приравнивания таких коэффициентов к их значениям в правых частях (нулевым) относительно $\{A_{rs}, B_{rs}\}$ получались бесконечные системы уравнений, для которых была доказана возможность редукции [13]. Так, решение поставленной задачи было сведено к анализу определителей конечного, хотя и достаточно большого, порядка. Значения таких определителей, в силу нетривиальности решения обращаемых в нуль при искомых значениях Ra, вычислялись с привлечением внешней памяти ПК — с последовательным исключением групп переменных, с применением обращения матриц.

4. РЕЗУЛЬТАТЫ РАСЧЁТОВ

В каждой из строк табл. 1...4 записано несколько Ra[.] — нулей определителя в порядке их возрастания. Конечно, практически более интересны первые два-три из предлагаемых значений. Использованы обозначения типа

Ra
$$_{ljk}$$
, $l = 1...4$, $j = 1...11$, $k = 1...5$, (6)

где $l - \mathbb{N}$ таблицы; $j - \mathbb{N}$ строки; $k - \mathbb{N}$ столбца. Цифры или буквы в индексах могут разделяться запятыми. Полное или неполное цифровое выражение индекса типа «*ljk*» относится к конкретному значению Ra_{кр} или к множеству {Ra_{кp} } с какойлибо общей характеристикой. В строках 1...9 каждой из табл. 1 и 2 представлены значения $R_{\rm kp} \cdot 10^{-5}$ для полостей прямоугольного сечения с относительной высотой

$$Y \in \{ 50; 20; 8; 4; 2; 1; 0.5; 0.1; 0.05 \}$$
(7)

последовательно; в строках 10, 11 — значения $R_{\rm kp} \cdot 10^{-4}$ для тех же полостей с Y = 0, затем с $Y = \infty$ (в обеих таблицах). В строках каждой из табл. 3 и 4 приводятся результаты для каналов с сечениями в виде внутренностей эллипсов, ограниченных вертикалями через середины горизонтальных полуосей; для отношений к последним вертикальных осей использованы значения $Y \in \{5, 2, 1, 0.5\}$ последовательно. В табл. 2 и 4 значения $R_{\rm kp}$ получены при допущении идеальной теплоизоляции вертикальных границ. Во всех других случаях — границы идеально.

Таблица 1. Ra_{1*jk*}·10⁻⁵; $\gamma = 1$; прямоугольное сечение

j	<i>k</i> = 1	2	3	4	5
1	0.1238	1.1719	3.2485	7.1830	8.3850
2	0.9058	1.2724	1.5006	1.6162	1.8390
3	0.5194	0.7154	0.8399	0.8984	0.9616
4	0.2747	0.3240	0.4567	0.4960	0.6035
5	0.1299	0.1792	0.2127	0.2998	0.3427
6	0.0299	0.0509	0.0728	0.0909	0.1050
7	0.0197	0.0621	0.0786	0.1302	0.1797
8	0.0216	0.0664	0.1103	0.1509	0.1739
9	0.0202	0.0408	0.0550	0.0754	0.1190
10	0.0171	0.1761	0.7571	2.1990	5.0970
0.1*	0.0097	0.0238	0.0559	0.2497	0.7890

Значение Ra₁₆₂ согласуется с результатом работы [8] — Ra_{кр}=5030. Дополнительно к результатам строки 6 табл. 2 определены, в частности, числа Ra_{26,10} = 34 201 и Ra_{26,11} = 38 530. Вместе с Ra₂₆₂ и с Ra₂₆₃ эта группа { Ra_{кр} } мало отличается от представленной в [9]-Ra_{кр} \in {5099; 8495; 30 080; 36 600}. Очевидно, практическое совпадение значений Ra₂₆₁ и Ra_{кр} = 2586 (см.[10]), а также Ra₂₅₂ и Ra_{кр} = 7800 (см. [11]). {Ra *i*_{11,k}, *i*= 1, 2} записаны на основе информации [5, гл. III].

Таблица 2. Ra_{1*ik*}·10⁻⁵; $\gamma = 2$; прямоугольное сечение

j	<i>k</i> = 1	2	3	4	5
1	0.1188	0.9860	3.1135	6.2650	7.4600
2	0.7940	1.2760	1.3752	1.6184	1.8360
3	0.4042	0.7030	0.8390	0.8820	0.9510
4	0.1759	0.3166	0.4058	0.4584	0.5004
5	0.0748	0.1562	0.1960	0.2897	0.3400
6	0.0247	0.0427	0.0705	0.0822	0.0996
7	0.0197	0.0328	0.0701	0.0832	0.1537
8	0.0174	0.0347	0.0712	0.1241	0.1733
9	0.0171	0.0292	0.0415	0.0589	0.1153
10	0.0171	0.1761	0.7571	2.1990	5.0970
0.1*	0.0031	0.0238	0.0914	0.2497	0.5570

В связи со значениями { Ra_{ljk} , l = 1, 2, j = 8,9} уместно вспомнить результаты [12], частично представленные в строке 10; они получены для нейтральных возмущений типа

$$\varphi = \varphi(y) \exp [j (n_1 x + n_2 z)], \varphi \in \{T, \psi\};$$
(8)
$$n_{1m}^2 + n_{2m}^2 = n_m^2, J = (-1)^{\frac{1}{2}}, m \in \{1...\infty\}$$

в плоских слоях, неограниченных x и z. Здесь n_m и $T(y), \psi(y)$ — вещественные волновые числа и амплитуды возмущений. Для каждого из чисел n_m рассмотрено множество значений $\{\text{Ra}_{\text{kp}}\}_m$ с удовлетворением выражений (8) задаче типа (2)—(4). С учётом всех таких множеств для нижних 10 уровней неустойчивости ($p \in 1...10$) приведены парные группы значений:

$$\{(\operatorname{Ra}_{\operatorname{Kp}p}\cdot 10^{-3}; n_p)\} = \{(1,708; 3,116), (17,61; 5,36), \}$$

$$(75,71; 7,58), (219.9; 9.80), (509.7; 12.02) \dots \}.$$
 (9)

Среди чисел {Ra *ijk*, $i = 1, 2, j = 8, 9, k \in \{1, 5, 6\}$ } есть значения, достаточно близкие к Ra_{кp1} и Ra_{кp2} из (9) соответственно. Сопоставление множества {Ra_{кp p}, $p \in \{3...10\}$ } из (9) с группой соответствующих выборочных значений {Ra_{кp}} при k > 6 выявляет уже практическое совпадение.

Заметны следующие взаимосвязи при $l \in \{2,4\}$,

$$k=1...5, j \in \{1...10\}$$
: Ra $_{ljk} < \text{Ra}_{,l-1,jk} < \text{Ra}_{lj,k+1}, (10)$

а именно, перемежаемость значений Ra_{kp} для вариантов с различием только условий для температуры. Соотношения типа (10) подтверждаются и во всех других рассмотриваемых авторами вариантах с таким различием. Вместе с { Ra_{kp} } в результате расчётов были получены и характеристики критических течений (зависимость от координат и изолинии для ψ и $T_{\rm B}$ и др.), соответствующие физическим представлениям.

Таблица 3. $\operatorname{Ra}_{3jk} \cdot 10^{-4}$; $\gamma = 1$; сечение эллиптического типа

j	<i>k</i> = 1	2	3	4	5
1	3.0535	4.0485	5.5070	6.1060	7.0070
2	1.4806	2.1284	2.4716	3.0024	3.6466
3	0.3215	0.5040	0.6710	0.9020	1.0008
4	0.2588	0.2902	0.8678	0.9327	1.9207

Таблица 4. $\operatorname{Ra}_{4jk} \cdot 10^{-4}$; $\gamma = 2$; сечение эллиптического типа

j	k = 1	2	3	4	5
1	2.1145	3.1415	4.0645	5.2105	6.8545
2	0.7085	1.4807	2.1370	2.9682	3.2512
3	0.2632	0.3261	0.6565	0.8674	0.9424
4	0.2460	0.2744	0.8288	0.9231	1.7031

5. АППРОКСИМАЦИОННЫЕ ФОРМУЛЫ

При обработке информации в строках 1...7 табл. 1 и 2 с целью аппроксимации в смысле метода наименьших квадратов при Y — ∈[0.5; 20] использована зависимость типа

$$\operatorname{Ra}_{\mathrm{\kappa p}} = \exp\left(\operatorname{ln} 2 \cdot \sum_{m=0}^{5} P_m \log_2^m Y\right); \qquad (11)$$

{*P_m*, *m*=0...5} последовательно приведены в столбцах табл. 5, 6 (*m*=0 снизу) в соответствии с № мод в табл. 1 и 2.

Таблица 5. { P_m , $m \in [5...0]$ }; $\gamma = 1$; прямоугольное сечение

k = 1	2	3	4	5
-0.0155	-0.0102	-0.0063	-0.0090	-0.0114
0.1705	0.1281	0.0915	0.1298	0.1599
0.6060	0.5463	0.4406	0.5926	0.7107
0.5030	0.7485	0.6736	0.8229	0.9631
1.9390	1.2350	1.1346	1.1227	1.1305
11.584	12.390	12.858	13.224	13.410

Таблица 6. { P_m , $m \in [5...0]$ }; $\gamma = 2$; прямоугольное сечение

<i>k</i> = 1	2	3	4	5
0.0095	-0.0044	-0.0171	-0.0159	-0.0131
0.1229	0.0017	0.1325	0.1040	0.0766
0.3430	0.1191	0.2391	0.0541	0.0255
0.1517	0.3619	0.2102	0.5107	0.5275
1.0181	1.3622	1.5841	1.3919	1.2272
12.910	13.902	14.199	14.747	14.985

В строках табл. 7 (в соответствии с ростом k) приведены максимумы абсолютного (Δ), затем относительного (δ) рассогласования результатов расчёта по формуле (11) со значениями {Ra_{kp}} в табл. 1 ($s \in \{1,2\}$ в табл. 7), затем в табл. 2. При s = 5 в каждой строке последовательно показаны порядковые номера для {Y} из (7), соответствующих значениям при s = 1...4.

Числа { E_{ljk} } в табл. 8, 9 представляют, при полном соответствии индексов {j, k}, отношения значений { Ra_{ljk} } из табл. 3, 4 к результатам расчёта по формуле (11). Видно, что её применение с коэффициентами { P_m , $m \in [5...0]$ } из табл. 5 возможно и для сечений эллиптического типа при $\gamma = 1$ (табл. 8). Для аналогичного подхода при $\gamma = 2$ нет оснований; существенно различие доли теплопроводных участков границы.

Таблица 7. $\{\Delta \cdot 10^{-3}; \delta \cdot 10^{1}; \gamma = 1,2;$ прямоугольное сечение

s = 1	2	3	4	5
2.3449	0.79328	3.821	0.849	3,4,3,4
6.4271	1.6828	4.547	0.562	3,4,3,4
2.7744	0.57071	10.247	1.120	3,4,3,4
7.8286	1.5783	15.395	1.394	4,4,3,4
6.6239	1.0976	16.555	1.281	4,4,2,4

Таблица 8. E_{3ik} ; $\gamma = 1$; сечение эллиптического типа

<i>k</i> = 1	2	3	4	5
0.8588	0.8782	0.9370	0.9219	0.9251
1.2137	1.3494	1.2164	1.1296	1.1591
1.0475	0.9391	0.9039	0.9426	0.9196
1.3177	0.4712	1.1080	0.7227	1.0755

Таблица 9. E_{4jk} ; $\gamma = 2$; сечение эллиптического типа

k = 1	2	3	4	5
0.3663	0.3745	0.4554	0.5618	0.6657
0.4307	0.4460	0.4776	0.5723	0.5804
0.3420	0.2130	0.3490	0.3154	0.2906
0.9998	0.6403	1.1672	1.1123	1.6953

ЗАКЛЮЧЕНИЕ

При решении задачи об устойчивости равновесия жидкости эффективен подход, близкий к строго аналитическому, с использованием линейной редуцируемой системы уравнений, алгебраической относительно числа Рэлея Ra.

Получена информация по Ra_{kp} и по картинам критических течений для полостей с сечениями прямоугольными, а также в виде внутренностей эллипсов, ограниченных вертикалями через середины горизонтальных полуосей; в частности, замечена перемежаемость значений Ra_{kp} для вариантов с различием только условий для температуры. Предложена формула (погрешность не более 15 %), в смысле метода наименьших квадратов аппроксимирующая зависимость { Ra_{kp} } от отношения высоты к длине ($Y - \in [0.5; 20]$) для прямоугольных сечений. Её применение возможно и для сечений рассмотренного эллиптического типа с полностью теплопроводными границами.

СПИСОК ОБОЗНАЧЕНИЙ

- A, B подлежащие определению коэффициенты в раз-
- ложениях для ψ , *t* в (5); $i \in \{1, -1\}; J = (-1)^{1/2};$ N — число слагаемых в разложениях (5);
- n вещественное волновое число;
- *I* вещественное волновое число, *L* — максимальный размер по горизонтали;
- L = Maker Mainshill passep no ropuson
- $\Pr = \nu/a$ число Прандтля;
- Ra = $g_0 \theta_0 L^4 \beta / (va)$ число Рэлея;
- a температуропроводность, m^2/c ;
- f-функция индексов в (5);
- g ускорение поля массовых сил, м/с²;
- Е отношение значений Ra, вычисленного к рассчитанному по аппрокс. зависимости;
- *p* давление, Па;
- Т температура, К;
- V скорость, м/с;
- *х*, *у*, *z* декартовы координаты;
- Y отношение габаритных размеров в направлениях осей *у* и *x*;
- Δ оператор Лапласа, абсолютная погрешность;
- Γ, χ, Ω относительная амплитуда, безразмерные частота и параметр модуляции;
- П функция координат в (5);
- Σ символ суммы;
- β термическое расширение, K⁻¹;
- $\gamma \in \{1;2\}$ род граничных условий для *T*;
- δ относительная погрешность;
- θ равновесный градиент температуры, К/м;
- v кинематическая вязкость, m^2/c ;

- ρ плотность, кг/м³;
- τ время, с;
- ф общее обозначение величин;
- ψ— функция тока.
- Индексы:
- 0, кр равновесные или стационарные значения, критические;
- в возмущение;
- $i \in \{1;2\}$ граница области;
- *l,j,k* № таблицы, строки, моды для Ra;
- *т*, *р* в последовательностях (7) и (8);
- *r,s* в разложениях (5);
- x зависимость от аргумента x;

СПИСОК ЛИТЕРАТУРЫ

- Петражицкий Г.Б., Пылаев А.М. Аналитическое исследование равновесия жидкости в замкнутых полостях // Межд. симпозиум по гидромеханике и теплообмену в невесомости. Пермь, 1991.
- Pylaev A.M., Diev M.D. Theoretical approach to the analysis of flows and equilibria in gasliquid system // IAC '94. Proceedings. M., 1995. V. 1. S. 737—739.
- Пылаев А.М. Задача о критических конвективных движениях в горизонтально-цилиндрических полостях// Изв. РАН. МЖГ. 2005. № 3. С. 14—24.
- 4. Уховский М.Р., Юдович В.И. Об уравнениях стационарной конвекции // ПММ. 1963. Т. 27. № 2. С. 295— 300.
- 5. Гершуни Г.З., Жуховицкий Е.М. Конвективная устойчивость несжимаемой жидкости. М.: Наука, 1972. 392 с.
- 6. Гершуни Г.З., Жуховицкий Е.М., Непомнящий А.А. Устойчивость конвективных течений. М.: Наука, 1989. 319 с.
- Полежаев В.И., Сазонов В.В. Механика невесомости и гравитационно-чувствительные системы // Аннотации докл н.-иссл. семинара. М.: ИПМ РАН, 1998. 36 с.
- Velte W. Stäbilitätsverhalten und verzweigung stationarer lösungen der Navier — Stokesschen Gleichungen// Arch. Ration. Mech. Anal. 1964. V. 16. № 2. P. 97—125.
- 9. Гершуни Г.З., Жуховицкий Е.М., Тарунин Е.Л. Численное исследование конвекции жидкости, подогр. снизу // Изв.АН СССР. МЖГ. 1966. № 6. С. 93—99.
- 10. **Kurzweg U.H.** Convektive instability of a hydromagnetic fluid within a rectangular cavity//Int. J. Heat Mass Transfer. 1965. № 8. P. 35—41.
- Петражицкий Г.Б., Полежаев В.И. Исследование режимов теплообмена при свободном движении вязкого газа в двумерных полостях // Научн. труды МВТУ. М.: Изд-во МВТУ, 1976. № 222. С. 27—66.
- 12. Catton I. Natural convektion in horizontal liquid layers // Phis. Fluids. 1966. V. 9. № 12. P. 2521.
- 13. Канторович Л.В., Крылов В.И. Приближённые методы высшего анализа. М.—Л.: ГИТТЛ, 1950. 696 с.