Ю.Л, Леухин¹, Э.Н. Сабуров¹, В. Гарен², И.А. Усачев¹

Архангельский государственный технический университет, Россия (1) Университет прикладных наук, Эмден, Германия (2)

ОБТЕКАНИЕ ЦИЛИНДРА, СМЕЩЕННОГО С ОСИ ЦИКЛОННОГО ПОТОКА

АННОТАЦИЯ

Анализируются физические особенности гидродинамического взаимодействия циклонного потока с цилиндром, ось которого смещена с его аэродинамической оси.

1. ВВЕДЕНИЕ

Обтекание круглых цилиндров, смещенных с аэродинамической оси закрученного потока, является сложным гидродинамическим процессом, зависящим от совокупного влияния их диаметра, длины, величины смещения, геометрических характеристик генерирующего закрученный поток циклонного устройства и числа Рейнольдса [1]. Задача представляет не только теоретический, но и практический интерес с точки зрения дальнейшего изучения аэродинамики и конвективного теплообмена в вертикальных циклонных нагревательных устройствах для группового нагрева заготовок.

2. ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОГО СТЕНДА И МЕТОДИКИ ИССЛЕДОВАНИЯ

Исследования выполнены на экспериментальном стенде [2], созданном авторами в лаборатории прикладной лазерной техники (Institut für Angewandte Lasertechnik) университета прикладных наук г. Эмден (Германия). Стенд включает циклонную камеру, измерительный комплекс лазерной установки LDA и комплект оборудования для исследования конвективного теплообмена.

Циклонная камера была выполнена из оргстекла, имела внутренний диаметр $D_{\rm K} = 2R_{\rm K} = 179$ мм и длину $L_{\rm K} = 272$ мм. Подвод воздуха в камеру осуществлялся тангенциально внутренней поверхности с двух диаметрально противоположных сторон через каналы с высотой 13 мм и длиной, размер по образующей, равной 40 мм. Безразмерная суммарная площадь входа потока $\overline{f}_{\rm BX} = 4f_{\rm BX}/\pi D_{\rm K}^2$ равнялась 4,13·10⁻². Отвод воздуха из циклонной камеры производился через осесимметричное с рабочим объемом отверстие в верхнем торце. Относительный диаметр выходного отверстия $\overline{d}_{\rm BыX} = d_{\rm BыX}/D_{\rm K}$ составлял 0,4.

Распределения осредненных и пульсационных значений тангенциальной и осевой составляющих вектора скорости исследовались LDA в среднем поперечном сечении циклонной камеры при $\overline{z} = 0,670$ ($\overline{z} = z/D_{\rm K}$ – безразмерная координата, совпадающая с осью камеры и отсчитываемая от ее глухого торца) по методике подробно описанной в

работе [2].

Цилиндр имел длину 231,5 мм и диаметр d = 61,5 мм, что соответствовало параметру $d = d/D_{\rm K} = 0,344$. Торцы цилиндров отстояли от торцов камеры на расстоянии 23 мм, что исключало непосредственное воздействие на их боковую поверхность радиальных приторцевых перетечек. Величина относительного смещения $e = e/R_{\rm K}$ цилиндра равнялась 0,190 (17 мм).

3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Смещенный с аэродинамической оси закрученного потока цилиндр и боковая поверхность рабочего объема циклонной камеры образуют по направлению движения потока как бы замкнутый криволинейный канал типа конфузор – диффузор – конфузор и т.д. На рис.1 приведены распределения безразмерной тангенциальной скорости (w_{0} = $= w_0 / V_{\rm BX}$, $V_{\rm BX} -$ средняя скорость потока во входных шлицах циклонной камеры), линий тока, а также изотах тангенциальной и осевой ($w_z = w_z/V_{\rm BX}$) скоростей при обтекании цилиндра. На рис.1 обозначены: ф – угол с вершиной на оси камеры, отсчитываемый в направлении движения потока от радиуса, по которому осуществлено смещение цилиндра; ϕ_d – угол, отсчитываемый в поперечном сечении камеры от линии смещения цилиндра, с вершиной на его оси. По мере перемещения потока в конфузорной части течения и приближения его к наиболее стесненному проходному сечению $\phi = 0^{\circ}$ происходит увеличение уровня тангенциальных скоростей их перестройка ее профиля. Максимум w₀ приближается к поверхности цилиндра и увеличивается по величине. Поток перемещается здесь под влиянием отрицательного градиента давления, способствующего его разгону. В диффузорной части поперечного сечения ($\phi > 0^{\circ}$), положительный градиент давления препятствует продвижению потока у поверхности цилиндра и приводит к его отрыву в точке 2. С противоположной стороны цилиндра наблюдается вихрь. О размерах вихря можно судить по положению нулевой линии тока, которая замыкается между точками 1 и 2.

Граница разделения прямого и обратного течений в вихре (изотаха нулевого значения тангенциальной скорости) на рис. 1, в показана штриховой линией и берет начало в точке 1. Попятный вихревой поток срывается с поверхности цилиндра в точке 3. Между точками 3 и 4 расположена область сравнительно небольшого обратного течения по направлению, совпадающего с циклонным. В результате вероятно возникновение небольшой вихревой циркуляционной зоны. У поверхности цилиндра от точки 4 поток перемещается в направлении точки 2. На поверхности цилиндра существуют две критические точки: передняя 1 (лобовая), расположенная в месте разделения набегающего на цилиндр потока при $\varphi_d \approx \approx 250^\circ$, и задняя (кормовая) 2 при $\varphi_d \approx 45^\circ$ – точка стока.

Распределения изотах осевой скорости (рис. 1, г) показывают, что в вихре наблюдается интенсивный сток газа в направлении выходного отверстия. Осевые скорости в этой области соизмеримы с тангенциальными. Характер изменения изотах $\overline{w_z}$ в остальной части поперечного сечения также является сложным и не осесимметричным. Смещение цилиндра с аэродинамической оси циклонного потока приводит к появление значительных вторичных (осевых) течений.

Предположение о слабой зависимости распределений скорости циклонного потока от продольной координаты и практически плоском характере его течения при обтекании смещенного с оси цилиндра, как ранее считалось [1], является приближенным. Этот вывод подтверждают также и результаты математического моделирования, выполненные авторами с использованием программного комплекса CFX-5.7. На рис. 2 представлены результаты численного моделирования обтекания того же цилиндра и расположенного в циклонной камере также, как в вышерассмотренных опытах и при той же входной скорости потока V_{вх}. В опытах число Рейнольдса $Re_{BX} = V_{BX}D_K/v_{BX}$ равнялось 18,7·10⁴ ... 25,8·10⁴. В расчетах использована модель турбулентности Shear Stress Transport k- ω . Картина обтекания цилиндра, полученная в результате численного моделирования, представленная в виде распределений векторов и изотах полной скорости, расположение характерных точек 1 – 4 (рис. 2), хорошо согласуется с опытными данными (рис. 1). На рис. 2, б, г приведены распределения осевой скорости в виде контуров ее изотах в поперечном сечении циклонной камеры. На рис. 2, б хорошо видны вихри, су-

Рис. 1. Распределения тангенциальной скорости, линий тока, изотах тангенциальной и осевой скоростей

ществующие в ее рабочем объеме.

Рис. 2. Распределения тангенциальной (а) и осевой (б) скоростей, изотах полной (в) и осевой (г) скоростей

Сравнение распределений тангенциальной и осевой скоростей в поперечном сечении циклонной камеры полученных численным и экспериментальным методами показывает их вполне удовлетворительное совпадение.

Большое значение с точки зрения изучения и анализа закономерностей гидродинамики и теплообмена имеет исследование микроструктуры закрученного потока в циклонных нагревательных устройствах при сложных и нестандартных условиях течения теплоносителя.

Установлено [1], что при расположении цилиндра в центре циклонной камеры наблюдается осевая симметрия распределений не только осредненных параметров потока, но и интенсивности пульсаций

 $\varepsilon_{\varphi} = \sqrt{\overline{w_{\varphi}'^2}} / V$ тангенциальной И осевой $\varepsilon_z = \sqrt{{w_z'}^2} / V$ (V – осредненное значение полной скорости в данной точке) составляющих скорости. Радиус, соответствующий минимальным значениям интенсивности пульсаций скорости, практически совпадает с r_{om} – радиусом, характеризующим местоположение максимума тангенциальной составляющей (практически и полной) скорости потока. Распределения ε_{ϕ} и ε_z по радиусу определяются совокупным влиянием на турбулентность потока массовых сил и пограничных слоев, которые образуются на стенке циклонной камеры и поверхности цилиндра. При смещении цилиндра, вероятно, из-за

Рис. 3. Распределения $\varepsilon_{0}(a)$ и $\varepsilon_{z}(b)$ в поперечном сечении циклонной камеры

консервативного воздействия массовых сил на турбулентность происходит снижение ε_{φ} и ε_z от 10...15% вблизи поверхности цилиндра до 2...3% в области $\bar{r}_{\varphi m}$. При активном же влиянии массовых сил (при $\bar{r} > \bar{r}_{\varphi m}$) наблюдается увеличение интенсивности пульсаций скорости в направлении внешней стенки до 6...7%.

При исследованном смещении цилиндра с оси циклонного потока наблюдается нарушение осевой симметрии в распределениях ε_{0} и ε_{z} , происходит их увеличение не только около цилиндра, но также и на периферии потока. Изменяется характер распределений ε_φ, ε_z и вдоль линий тока (траекторий) циклонного потока (рис. 3). В конфузорной части течения наименьшие их значения 4...5,5% наблюдаются на радиусе равном $\bar{r}_{\phi m}$ при $\phi = 0^{\circ}$. В области $r > r_{0m}$ при увеличении радиуса интенсивность пульсаций возрастает до 10...20%. В диффузорной части поперечного сечения, минимальные значения ε_{0} и ε_{z} перемещаются к боковой поверхности рабочего объема на радиус равный примерно 0,9 и увеличиваются до 6...7% при $\phi = 180^{\circ}$. С уменьшением радиуса, при $\bar{r} < \bar{r}_{\phi m}$, в этой области течения происходит резкое увеличение ε_{ϕ} и ε_z . Наиболее высокие значения ε_{ϕ} и ε_z (до 200% и более) достигаются в центре вихря, на изотахе нулевого значения тангенциальной скорости, и в начале его образования у поверхности цилиндра за лобовой точкой 1 (при $\phi_d = 200^{\circ} \dots 220^{\circ}$), а также за точками отрыва потока 2 и 3.

ЗАКЛЮЧЕНИЕ

Выявленные закономерности гидродинамики циклонного потока, омывающего цилиндр, смещенный с его аэродинамической оси, дают возможность выполнить физически обоснованный анализ теплоотдачи этого цилиндра.

СПИСОК ОБОЗНАЧЕНИЙ

- *D*_к, *L*_к диаметр и длина циклонной камеры;
- d диаметр цилиндра, мм;
- е величина смещения оси цилиндра с оси циклонной камеры, мм;
- w скорость потока, м/с;
- v кинематический коэффициент вязкости, м²/с;
- r, ϕ, z цилиндрические координаты, м;
- Re число Рейнольдса.
- Индексы:

вх – параметры потока на входе в циклонную камеру; φ, *z* – параметры для тангенциальной и осевой составляющей вектора скорости;

т – максимальное значение параметра.

СПИСОК ЛИТЕРАТУРЫ

- 1. Леухин Ю.Л., Сабуров Э.Н., Васильев Д.В. Особенности обтекания цилиндра, смещенного с аэродинамической оси циклонного потока // Энергетика (Изв. высш. учеб. заведений). 1999. № 3. С.56–62.
- Разработка экспериментального стенда и исследование с помощью LDA аэродинамики циклонного нагревательного устройства / Ю.Л. Леухин, Э.Н. Сабуров, И.А. Усачев, В. Гарен // Охрана окружающей среды и рациональное использование природных ресурсов: Сб. науч. тр.: АГТУ, 2004. Вып. IX. С. 136–143.