Г.С. Журавлева¹, Н.Н. Пилюгин²

Институт математики, экономики и информатики Иркутского государственного университета, Россия (1) Институт механики Московского государственного университета, Россия (2)

ГИПЕРЗВУКОВОЕ ОБТЕКАНИЕ ВРАЩАЮЩИХСЯ ОСЕСИММЕТРИЧНЫХ ТЕЛ

АННОТАЦИЯ

Рассматривается гиперзвуковое обтекание затупленных осесимметричных тел, вращающихся вокруг продольной оси, потоком вязкого сжимаемого газа. Предполагается, что с поверхности тела производится вдув газа. Решение задачи получено конечно-разностным методом в широком диапазоне чисел Рейнольдса и параметра вращения.

Проведены расчеты обтекания параболоидов и исследуется зависимость распределения теплового потока и аэродинамических характеристик для случая постоянного по обводу тела вдува.

1. ПОСТАНОВКА ЗАДАЧИ

Рассмотрим обтекание гладкого затупленного тела, вращающегося вокруг оси симметрии, гиперзвуковым неравномерным потоком вязкого газа. Система уравнений вязкого ударного слоя получается из осредненных уравнений Навье-Стокса [1,2]. В безразмерных переменных в системе криволинейных координат x, y, ϑ , неподвижной в пространстве, уравнения имеют вид [3]

$$\frac{\partial}{\partial x} (\rho r_{w} u) + \frac{\partial}{\partial y} (\rho r_{w} v) = 0,$$

$$\rho \left(Du - \frac{\sin \alpha}{r_{w}} w^{2} \right) = -\varepsilon \frac{\partial p}{\partial x} + \frac{\partial}{\partial y} \left(\frac{\mu_{\Sigma}}{K} \frac{\partial u}{\partial y} \right),$$

$$\rho \left(Dw + \frac{\sin \alpha}{r_{w}} uw \right) = \frac{\partial}{\partial y} \left(\frac{\mu_{\Sigma}}{K} \frac{\partial w}{\partial y} \right),$$

$$\rho \left(ku^{2} + \frac{\cos \alpha}{r_{w}} w^{2} \right) = \frac{\partial p}{\partial y},$$

$$(1)$$

$$\rho Dc = \frac{\partial}{\partial y} \left(\frac{\mu_{\Sigma}}{Sc_{\Sigma}K} \frac{\partial c}{\partial y} \right),$$

$$\rho Dh = 2\varepsilon u \frac{\partial p}{\partial x} + \frac{2\mu_{\Sigma}}{K} \left(\frac{\partial u}{\partial y} \right)^{2} + \frac{\partial}{\partial y} \left(\frac{\mu_{\Sigma}}{\sigma_{\Sigma}K} \frac{\partial h}{\partial y} \right) -$$

 $-\frac{\partial}{\partial y} \left[\frac{\mu_{\Sigma}}{K} \left(\frac{1}{\sigma_{\Sigma}} - \frac{1}{Sc_{\Sigma}} \right) \left(c_{p_2} - c_{p_1} \right) T \frac{\partial c}{\partial y} \right],$ $p = \rho T, \ \mu = T^{\omega},$

$$D = u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y}, \quad K = \varepsilon \operatorname{Re}, \quad \varepsilon = \frac{\gamma - 1}{2\gamma},$$

$$\gamma = \frac{c_p}{c_v}, \operatorname{Re} = \frac{\rho_{\infty} V_{\infty} R_0}{\mu_0}, \quad \mu_0 = \mu(T_0) = T_0^{\omega},$$

$$T_0 = \frac{V_{\infty}^2}{2c_p}, \quad \sigma_{\Sigma} = \frac{\mu_0 \mu_{\Sigma} c_p}{\lambda_{\Sigma}}, \quad Sc_{\Sigma} = \frac{\mu_0 \mu_{\Sigma}}{\rho D_{\Sigma}},$$

$$h = (cc_{p_2} - (1 - c)c_{p_1})T, \quad c_v = cc_{v_2} - (1 - c)c_{v_1}.$$

Здесь х определяет расстояние вдоль образующей тела, измеренное от критической точки; у - расстояние по нормали к поверхности тела, uV_{∞} , $\varepsilon v V_\infty$ - компоненты вектора скорости, соответствующие осям x, y; $\rho_{\infty}V_{\infty}^2 p$, $\varepsilon^{-1}\rho_{\infty}\rho$, T_0T , h_0h , *c*_{*p*}, *c*_{*v*} - соответственно давление, плотность, температура, энтальпия, удельные теплоемкости газовой смеси при постоянном давлении и объеме; $\mu_0 \mu_{\Sigma}$, λ_{Σ} , D_{Σ} - коэффициенты полных вязкости, теплопроводности и диффузии; с - массовая концентрация вдуваемого газа; k - продольная кривизна поверхности тела. Все линейные размеры отнесены к характерному линейному размеру R_0 , нормальная координата - к εR_0 , в качестве R_0 выбирался радиус кривизны затупления тела при x = 0. Индекс *w* относится к величинам на поверхности тела, индекс Σ обозначает суммарные коэффициенты, обусловленные молекулярным и турбулентным переносом. Индекс 1 относится к компоненте внешнего потока, 2 - к вдуваемой компоненте. Влиянием термодиффузии пренебрегаем, так как рассматриваются случаи умеренных градиентов температуры.

Набегающий поток сжимаемого газа представляет собой осесимметричное сдвиговое течение типа следа [4,5]

$$V_{1}(r) = 1 - a \exp(-br^{2}),$$

$$\rho_{1}(r) = B[1 + C(1 - dV_{1}^{2})]^{-1},$$
 (2)

$$p_{1}(r) = \text{const}, c_{1}(r) = 0,$$

$$B = 1 + C(1 - d), d = (1 - a)^{-2}.$$

Здесь $V_{\infty}V_1$, $\rho_{\infty}\rho_1$, $\rho_{\infty}V_{\infty}^2p_1$, c_1 - соответственно скорость, плотность, давление и концентрация в набегающем потоке; R_0r - расстояние до оси симметрии потока; a, b, C - параметры, характеризующие неравномерность набегающего потока; V_{∞} , ρ_{∞} - скорость и плотность газа при $r \to \infty$. Обтеканию тела равномерным потоком газа соответствует a = 0.

На ударной волне $(y = y_s(x))$ будем задавать обобщенные условия Рэнкина-Гюгонио, которые в сверхзвуковом приближении при неравномерном обтекании имеют вид [6,7]

$$\rho \left(v - u \frac{dy_s}{dx} \right) = \rho_1 V_1 v_{\infty} , \quad p = \rho_1 V_1^2 v_{\infty}^2 ,$$

$$\rho_1 V_1 v_{\infty} \left(u - V_1 u_{\infty} \right) = \frac{\mu_{\Sigma}}{K} \frac{\partial u}{\partial y} ,$$

$$\rho_1 V_1 v_{\infty} w = \frac{\mu_{\Sigma}}{K} \frac{\partial w}{\partial y} ,$$

$$\rho_1 V_1 v_{\infty} c = \frac{\mu_{\Sigma}}{Sc_{\Sigma} K} \frac{\partial c}{\partial y} ,$$

$$\rho_1 V_1 v_{\infty} \left(T + u^2 + w^2 - V_1^2 \right) = \frac{\mu_{\Sigma}}{\sigma_{\Sigma} K} \frac{\partial T}{\partial y} +$$

$$+ \frac{2\mu_{\Sigma}}{K} \left(u \frac{\partial u}{\partial y} + w \frac{\partial w}{\partial y} \right) .$$
(3)

Здесь $u_{\infty} = \cos \alpha$, $v_{\infty} = -\sin \alpha$, α - угол между касательной к поверхности тела и осью симметрии.

На поверхности тела (y = 0) зададим условие прилипания для продольной составляющей скорости, расход газа, значение азимутальной скорости, условие для концентрации вдуваемого газа и температуру стенки

$$u = 0, \rho v = G(x), w = Br_w(x),$$

$$\rho v(1-c) = -\frac{\mu_{\Sigma}}{Sc_{\Sigma}K} \frac{\partial c}{\partial y}, T = T_w(x).$$
(4)

Здесь
$$G(x) = \frac{\rho_w v_w}{\rho_\infty V_\infty}$$
, $B = \frac{\Omega R}{V_\infty}$, Ω - постоянная

угловая скорость вращения поверхности тела вокруг оси симметрии.

Для замыкания системы уравнений (1)-(4) используется алгебраическая модель для коэффициентов переноса [3, 8]

2. МЕТОД РЕШЕНИЯ

Решение уравнений (1-4) проводится в переменных типа Дородницына [9]

$$x = \xi, \ \eta = \frac{1}{\Delta} \int_{0}^{y} \rho dy, \ \zeta = \vartheta, \ \Delta = \int_{0}^{y_s} \rho dy,$$

$$\psi = r_w^{\nu} \Delta u_* f_1, \quad u = u_* \left(\xi\right) \frac{\partial f_1}{\partial \eta}, \tag{5}$$
$$w = w_* \left(\xi\right) \frac{\partial f_2}{\partial \eta}, \quad c = \frac{\partial \varphi}{\partial \eta}, \quad T = T_* \left(\xi\right) \theta.$$

Здесь ψ - функция тока. Функции $u_*(\xi)$, $w_*(\xi)$ в расчетах принимались равными u_{∞} , при этом особенности, возникающие в коэффициентах уравнений при $\xi = 0$, разрешаются; $T_*(\xi)$ полагалось равным v_{∞}^2 .

Численное решение получено с помощью неявной конечно-разностной схемы [10], имеющей четвертый порядок точности по нормальной координате к поверхности, первый - по продольной и поперечной. Нелинейная система разностных уравнений решалась с применением итераций, при этом линеаризованные уравнения решались поочередно прогонкой. Для определения продольной составляющей градиента давления четвертое уравнение системы (1), записанное в переменных (5) дифференцировалось по переменной ξ . В результате для градиента давления получилось обыкновенное дифференциальное уравнение 1-го порядка, которое интегрировалось на каждой итерации от ударной волны до тела с применением квадратурной формулы Симпсона. Аналогичным образом интегрировалось и уравнение для давления. В качестве начального приближения на критическом луче задавались линейные профили компонент скорости, концентрации и температуры. На всех последующих лучах исходные значения параметров брались с предыдущего слоя. Выход из итерационного цикла осуществлялся по условию, что отличие всех профилей и параметра Δ на данной итерации от предыдущей не превосходит 10^{-4} .

3. РЕЗУЛЬТАТЫ ЧИСЛЕННОГО РЕШЕНИЯ

Расчеты течений около вращающихся параболоидов выполнялись при следующих параметрах задачи: a = 0,02; b = 2,6; C = 4 -безразмерные параметры набегающего потока; $\text{Re} = 10^6 \div 7 \cdot 10^6$; $B = 0 \div 1,5$; $\sigma = 0,7$; $\sigma_T = 0,9$; Sc = 0,7; $Sc_T = 0,9$; $T_w = 0,15$; $\omega = 0,5$; $\gamma = 1,417$ (вдув гелия); G(x) = 0,001.

Уравнение образующей тела в цилиндрической системе координат, связанной с носком тела, имеет вид $r^2 = 2pz$, p – параметр. Изменением параметра p можно менять эффективный раствор параболоида.

Некоторые результаты расчетов приведены на рис. 1-4.

Расчеты обтекания параболоидов показывают, что профили продольной компоненты скорости *и* при вращении являются более наполненными как в критической точке так и на обводе параболоида. Температура газа внутри ударного слоя при враще-

Рис. 1. Распределения теплового потока q_w вдоль поверхности параболоида $r^2 = 2pz$, (p = 1) при B = 0.5: 1 - Re = $3 \cdot 10^6$; 2 - Re = $5 \cdot 10^6$; 3 -Re = $7 \cdot 10^6$

нии тела больше, чем без вращения. На боковой поверхности это связано с ненулевой азимутальной компонентой скорости *w*, которая дает дополнительный вклад в диссипативный разогрев газа в ударном слое.

Влияние вращения тела на распределения теплового потока вдоль поверхности параболоида при разных числах Рейнольдса приведено на рис.1. Расчеты показывают, что во всем рассмотренном диа-

Рис. 2. Зависимости коэффициента момента аэродинамических сил от параметра вращения при обтекании параболоида $r^2 = 2pz$, (p=1) при B = 0,5: 1 -Re = $3 \cdot 10^6$; 2 - Re = $5 \cdot 10^6$; 3 - Re = $7 \cdot 10^6$

пазоне чисел Рейнольдса наблюдается немонотонное распределение теплового потока вдоль поверхности параболоида. Максимум теплового потока достигается на боковой поверхности параболоида. Рост параметра вращения ведет к увеличению теплового потока к поверхности параболоида.

На рис. 2 приведена зависимость коэффициента момента сил сопротивления от параметра вращения *В* при разных числах Рейнольдса. При увеличении

Рис. 3. Зависимость коэффициента момента аэродинамических сил от параметра вращения *B* при обтекании параболоида $r^2 = 2pz$: 1 - p = 1,4; 2 p = 0,8; 3 - p = 0,4

Рис. 4. Зависимость коэффициента полного теплового потока от параметра вращения *B* при обтекании параболоида $r^2 = 2pz$: 1 - p = 1,4; 2 - p = 0,8; 3 - p = 0,4

114

параметра вращения коэффициент момента аэродинамических сил увеличивается. Расчеты показывают, что в рассматриваемом диапазоне чисел Рейнольдса зависимость от параметра вращения коэффициента момента аэродинамических сил близка к линейной.

На рис. 3 приведены зависимости коэффициента момента аэродинамических сил от параметра вращения *B* при разных значениях параметра *p* параболоида. При увеличении параметра вращения *B* коэффициент момента аэродинамических сил увеличивается. Зависимость от параметра вращения коэффициента момента аэродинамических сил близка к линейной.

На рис. 4 приведены зависимости коэффициента полного теплового потока от параметра вращения *B* при разных значениях параметра *p* параболоида. С увеличением параметра вращения *B* коэффициент полного теплового потока увеличивается.

При увеличении параметра вращения волновое сопротивление уменьшается, сопротивление трения увеличивается, поэтому полное сопротивление трения изменяется незначительно. Коэффициент полного теплового потока возрастает при этих условиях.

СПИСОК ОБОЗНАЧЕНИЙ

x - расстояние вдоль образующей тела; **y** - расстояние по нормали от поверхности тела; \mathcal{G} - меридиональный угол; Oz - ось симметрии тела; z, r - оси цилиндрической координат, связанной с носком затупленного тела; α - угол между касательной к элементу поверхности тела и Oz; u, v, w -компоненты вектора скорости; R_0 - радиус затупления тела; a, b, C - параметры, характеризующие неравномерность набегающего потока; V_{∞} , ρ_{∞} - скорость и плотность газа при $r \to \infty$.

 $q_w = \sqrt{\text{Re}} \frac{\mu_{\Sigma}}{2\sigma_{\Sigma}K} \frac{\partial T}{\partial y}$ - безразмерный тепловой поток;

 $c_p = Z_p / \left(0.5 \rho_{\infty} U_{\infty}^2 S_m \right)$ - коэффициент волнового

сопротивления; $c_t = Z_t / (0.5 \rho_\infty U_\infty^2 S_m)$ -коэффициент сопротивления трения; $c_z = c_p + c_t$ - коэффициент полного сопротивления; $m_z = M_z / (0.5 \rho_\infty U_\infty^2 R_m S_m)$ -

коэффициент момента аэродинамических сил; $c_q = Q / \left(0.5 \rho_\infty U_\infty^3 S_m \right)$ - коэффициент полного теплового потока; $Z = Z_p + Z_f$ - сила полного сопротивления; M_z - момент аэродинамических сил относительно оси Oz; Q - суммарный тепловой поток к телу; R_m , S_m - радиус и площадь миделева сечения.

СПИСОК ЛИТЕРАТУРЫ

- Головачев Ю.П. Численное моделирование течений вязкого газа в ударном слое. М.: Наука. Физматлит, 1996. 376 с.
- Тирский Г.А. К теории гиперзвукового обтекания плоских и осесимметричных затупленных тел вязким химически реагирующим многокомпонентным потоком газа при наличии вдува // Научные труды ИМ МГУ. 1975. № 39. С.5-38.
- 3. Журавлева Г.С., Пилюгин Н.Н. Турбулентный ударный слой на вращающихся затупленных телах, обтекаемых неравномерным сверхзвуковым потоком вязкого газа при наличии вдува // Внутрикамерные процессы, горение и газовая динамика дисперсных систем. Четвертая международная школа-семинар. Сборник материалов. Санкт-Петербург, 2004. Т.1. С.160-163.
- 4. Пилюгин Н.Н., Тихомиров С.Г., Чернявский С.Ю. Приближенный метод расчета параметров воздуха и интенсивности излучения в дальнем следе // Изв. АН СССР. МЖГ. 1980. № 6. С. 165-175.
- Lin T.C., Reeves B.L., Siegelman D. Blunt-body problem in nonuniform flowfields // AIAA J. 1977. V.15. № 8. P.1130-1137.
- 6. Еремейцев И.Г., Журавлева Г.С., Пилюгин Н.Н. Исследование турбулентного течения в вязком ударном слое при обтекании газом затупленных удлиненных тел // ПМТФ. 1993. № 1. С.69-75.
- Журавлева Г.С., Пилюгин Н.Н. Влияние вдува газа с поверхности сферы на трение и теплообмен при неравномерном турбулентном гиперзвуковом обтекании // ТВТ. 1999. Т.37. № 3. С.427-433.
- Котляр Я.М., Совершенный В.Д., Стриженов Д.С. Методы и задачи теплообмена. М.: Машиностроение, 1987. 302 с.
- Дородницын А.А. Плоский пограничный слой в сжимаемом газе // ПММ. 1942. Т.6. Вып.6. С.449-486.
- Петухов И.В. Численный расчет двумерных течений в пограничном слое // Численные методы решения дифференциальных уравнений и квадратурные формулы. Доп. к ЖВМ и МФ. № 4. М.: Наука, 1964. С. 304-325.